一种cmos -忆阻器混合系统,用于实现随机二进制尖峰时间相关的可塑性

J. Ahmadi-Farsani, Saverio Ricci, S. Hashemkhani, D. Ielmini, B. Linares-Barranco, T. Serrano-Gotarredona
{"title":"一种cmos -忆阻器混合系统,用于实现随机二进制尖峰时间相关的可塑性","authors":"J. Ahmadi-Farsani, Saverio Ricci, S. Hashemkhani, D. Ielmini, B. Linares-Barranco, T. Serrano-Gotarredona","doi":"10.1098/rsta.2021.0018","DOIUrl":null,"url":null,"abstract":"This paper describes a fully experimental hybrid system in which a 4×4 memristive crossbar spiking neural network (SNN) was assembled using custom high-resistance state memristors with analogue CMOS neurons fabricated in 180 nm CMOS technology. The custom memristors used NMOS selector transistors, made available on a second 180 nm CMOS chip. One drawback is that memristors operate with currents in the micro-amperes range, while analogue CMOS neurons may need to operate with currents in the pico-amperes range. One possible solution was to use a compact circuit to scale the memristor-domain currents down to the analogue CMOS neuron domain currents by at least 5–6 orders of magnitude. Here, we proposed using an on-chip compact current splitter circuit based on MOS ladders to aggressively attenuate the currents by over 5 orders of magnitude. This circuit was added before each neuron. This paper describes the proper experimental operation of an SNN circuit using a 4×4 1T1R synaptic crossbar together with four post-synaptic CMOS circuits, each with a 5-decade current attenuator and an integrate-and-fire neuron. It also demonstrates one-shot winner-takes-all training and stochastic binary spike-timing-dependent-plasticity learning using this small system. This article is part of the theme issue ‘Advanced neurotechnologies: translating innovation for health and well-being’.","PeriodicalId":286094,"journal":{"name":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A CMOS–memristor hybrid system for implementing stochastic binary spike timing-dependent plasticity\",\"authors\":\"J. Ahmadi-Farsani, Saverio Ricci, S. Hashemkhani, D. Ielmini, B. Linares-Barranco, T. Serrano-Gotarredona\",\"doi\":\"10.1098/rsta.2021.0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a fully experimental hybrid system in which a 4×4 memristive crossbar spiking neural network (SNN) was assembled using custom high-resistance state memristors with analogue CMOS neurons fabricated in 180 nm CMOS technology. The custom memristors used NMOS selector transistors, made available on a second 180 nm CMOS chip. One drawback is that memristors operate with currents in the micro-amperes range, while analogue CMOS neurons may need to operate with currents in the pico-amperes range. One possible solution was to use a compact circuit to scale the memristor-domain currents down to the analogue CMOS neuron domain currents by at least 5–6 orders of magnitude. Here, we proposed using an on-chip compact current splitter circuit based on MOS ladders to aggressively attenuate the currents by over 5 orders of magnitude. This circuit was added before each neuron. This paper describes the proper experimental operation of an SNN circuit using a 4×4 1T1R synaptic crossbar together with four post-synaptic CMOS circuits, each with a 5-decade current attenuator and an integrate-and-fire neuron. It also demonstrates one-shot winner-takes-all training and stochastic binary spike-timing-dependent-plasticity learning using this small system. This article is part of the theme issue ‘Advanced neurotechnologies: translating innovation for health and well-being’.\",\"PeriodicalId\":286094,\"journal\":{\"name\":\"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2021.0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文描述了一个完全实验性的混合系统,该系统使用定制的高电阻状态记忆电阻器和180 nm CMOS技术制造的模拟CMOS神经元组装4×4记忆电阻器交叉尖峰神经网络(SNN)。定制的忆阻器使用NMOS选择晶体管,可在第二个180纳米CMOS芯片上使用。一个缺点是忆阻器在微安范围内工作,而模拟CMOS神经元可能需要在微安范围内工作。一个可能的解决方案是使用一个紧凑的电路,将忆阻器域电流缩小到模拟CMOS神经元域电流的5-6个数量级。在这里,我们建议使用基于MOS梯形的片上紧凑型电流分配器电路,以积极地衰减电流超过5个数量级。这个回路在每个神经元之前被添加。本文描述了一个SNN电路的正确实验操作,该电路使用4×4 1T1R突触交叉棒和四个突触后CMOS电路,每个电路都有一个50 - 10电流衰减器和一个集成-发射神经元。它还演示了一次性赢家通吃的训练和随机二进制峰值时间依赖的可塑性学习使用这个小系统。本文是主题“先进神经技术:将创新转化为健康和福祉”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A CMOS–memristor hybrid system for implementing stochastic binary spike timing-dependent plasticity
This paper describes a fully experimental hybrid system in which a 4×4 memristive crossbar spiking neural network (SNN) was assembled using custom high-resistance state memristors with analogue CMOS neurons fabricated in 180 nm CMOS technology. The custom memristors used NMOS selector transistors, made available on a second 180 nm CMOS chip. One drawback is that memristors operate with currents in the micro-amperes range, while analogue CMOS neurons may need to operate with currents in the pico-amperes range. One possible solution was to use a compact circuit to scale the memristor-domain currents down to the analogue CMOS neuron domain currents by at least 5–6 orders of magnitude. Here, we proposed using an on-chip compact current splitter circuit based on MOS ladders to aggressively attenuate the currents by over 5 orders of magnitude. This circuit was added before each neuron. This paper describes the proper experimental operation of an SNN circuit using a 4×4 1T1R synaptic crossbar together with four post-synaptic CMOS circuits, each with a 5-decade current attenuator and an integrate-and-fire neuron. It also demonstrates one-shot winner-takes-all training and stochastic binary spike-timing-dependent-plasticity learning using this small system. This article is part of the theme issue ‘Advanced neurotechnologies: translating innovation for health and well-being’.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信