基于卷积神经网络和K-Means聚类的FMCW雷达材料表征

Salah Abouzaid, T. Jaeschke, J. Barowski, N. Pohl
{"title":"基于卷积神经网络和K-Means聚类的FMCW雷达材料表征","authors":"Salah Abouzaid, T. Jaeschke, J. Barowski, N. Pohl","doi":"10.23919/mikon54314.2022.9924681","DOIUrl":null,"url":null,"abstract":"This paper proposes a machine learning model and a calibrated frequency-modulated continuous-wave (FMCW) radar sensor to characterize dielectric slabs. First, a calibration concept derived from vector network analyzer (VNA) measurements is used to calibrate the FMCW radar’s raw IF signal and to measure the reflection coefficient of a material at a much lower cost than the VNA. Second, the measured reflection coefficient is fitted to a complex-valued convolutional neural network (CNN) to determine the dielectric constant, loss tangent and thickness of the material. K-means clustering is proposed to reduce the complexity of the CNN by significantly reducing the number of classes. The results show that the proposed model enables the extraction of the material parameters with high accuracy.","PeriodicalId":177285,"journal":{"name":"2022 24th International Microwave and Radar Conference (MIKON)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FMCW Radar-Based Material Characterization Using Convolutional Neural Network and K-Means Clustering\",\"authors\":\"Salah Abouzaid, T. Jaeschke, J. Barowski, N. Pohl\",\"doi\":\"10.23919/mikon54314.2022.9924681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a machine learning model and a calibrated frequency-modulated continuous-wave (FMCW) radar sensor to characterize dielectric slabs. First, a calibration concept derived from vector network analyzer (VNA) measurements is used to calibrate the FMCW radar’s raw IF signal and to measure the reflection coefficient of a material at a much lower cost than the VNA. Second, the measured reflection coefficient is fitted to a complex-valued convolutional neural network (CNN) to determine the dielectric constant, loss tangent and thickness of the material. K-means clustering is proposed to reduce the complexity of the CNN by significantly reducing the number of classes. The results show that the proposed model enables the extraction of the material parameters with high accuracy.\",\"PeriodicalId\":177285,\"journal\":{\"name\":\"2022 24th International Microwave and Radar Conference (MIKON)\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 24th International Microwave and Radar Conference (MIKON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/mikon54314.2022.9924681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 24th International Microwave and Radar Conference (MIKON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/mikon54314.2022.9924681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种机器学习模型和校准调频连续波(FMCW)雷达传感器来表征介质板。首先,采用矢量网络分析仪(VNA)测量的校准概念来校准FMCW雷达的原始中频信号,并以比VNA低得多的成本测量材料的反射系数。其次,将测量到的反射系数拟合到复值卷积神经网络(CNN)中,确定材料的介电常数、损耗正切和厚度。提出K-means聚类,通过显著减少类的数量来降低CNN的复杂度。结果表明,该模型能够较准确地提取材料参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FMCW Radar-Based Material Characterization Using Convolutional Neural Network and K-Means Clustering
This paper proposes a machine learning model and a calibrated frequency-modulated continuous-wave (FMCW) radar sensor to characterize dielectric slabs. First, a calibration concept derived from vector network analyzer (VNA) measurements is used to calibrate the FMCW radar’s raw IF signal and to measure the reflection coefficient of a material at a much lower cost than the VNA. Second, the measured reflection coefficient is fitted to a complex-valued convolutional neural network (CNN) to determine the dielectric constant, loss tangent and thickness of the material. K-means clustering is proposed to reduce the complexity of the CNN by significantly reducing the number of classes. The results show that the proposed model enables the extraction of the material parameters with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信