无线传感器网络的分布式信号处理算法

Ashwini S Chiwarkar
{"title":"无线传感器网络的分布式信号处理算法","authors":"Ashwini S Chiwarkar","doi":"10.24113/ijoscience.v7i8.404","DOIUrl":null,"url":null,"abstract":"Wireless Body Area Networks (WBAN), in particular in the field of wearable health monitoring system (WMB), such as electromagnetic cardiograms (ECG) data collecting system via WBANs in e-health applications, is becoming increasingly important for future communication systems. Compressive sensing (CS), on the other hand, has been shown to consume less power compared classic transform-coding-based approaches. We propose a new low-rank sparse deep signal recovery algorithm for recovering ECG data in the context of CS (Compressive sensing) because the spatial and temporal data collected by a WBAN have some closely correlated structures in certain wavelet domains e.g., the discrete wavelet transform (DWT) domain","PeriodicalId":429424,"journal":{"name":"SMART MOVES JOURNAL IJOSCIENCE","volume":"272 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Signal Processing Algorithms for Wireless Sensor Networks\",\"authors\":\"Ashwini S Chiwarkar\",\"doi\":\"10.24113/ijoscience.v7i8.404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless Body Area Networks (WBAN), in particular in the field of wearable health monitoring system (WMB), such as electromagnetic cardiograms (ECG) data collecting system via WBANs in e-health applications, is becoming increasingly important for future communication systems. Compressive sensing (CS), on the other hand, has been shown to consume less power compared classic transform-coding-based approaches. We propose a new low-rank sparse deep signal recovery algorithm for recovering ECG data in the context of CS (Compressive sensing) because the spatial and temporal data collected by a WBAN have some closely correlated structures in certain wavelet domains e.g., the discrete wavelet transform (DWT) domain\",\"PeriodicalId\":429424,\"journal\":{\"name\":\"SMART MOVES JOURNAL IJOSCIENCE\",\"volume\":\"272 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SMART MOVES JOURNAL IJOSCIENCE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24113/ijoscience.v7i8.404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SMART MOVES JOURNAL IJOSCIENCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24113/ijoscience.v7i8.404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无线体域网络(WBAN),特别是在可穿戴健康监测系统(WMB)领域,如电子医疗应用中通过无线体域网络的电磁心电图(ECG)数据采集系统,对未来的通信系统变得越来越重要。另一方面,与经典的基于变换编码的方法相比,压缩感知(CS)已被证明消耗更少的功率。由于WBAN采集的时空数据在某些小波域(如离散小波变换域)中具有密切相关的结构,因此提出了一种新的低秩稀疏深度信号恢复算法,用于压缩感知下的心电数据恢复
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Signal Processing Algorithms for Wireless Sensor Networks
Wireless Body Area Networks (WBAN), in particular in the field of wearable health monitoring system (WMB), such as electromagnetic cardiograms (ECG) data collecting system via WBANs in e-health applications, is becoming increasingly important for future communication systems. Compressive sensing (CS), on the other hand, has been shown to consume less power compared classic transform-coding-based approaches. We propose a new low-rank sparse deep signal recovery algorithm for recovering ECG data in the context of CS (Compressive sensing) because the spatial and temporal data collected by a WBAN have some closely correlated structures in certain wavelet domains e.g., the discrete wavelet transform (DWT) domain
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信