亚微米晶体管级延迟模型下扇出优化

P. Cocchini, Massoud Pedram, G. Piccinini, M. Zamboni
{"title":"亚微米晶体管级延迟模型下扇出优化","authors":"P. Cocchini, Massoud Pedram, G. Piccinini, M. Zamboni","doi":"10.1145/288548.289085","DOIUrl":null,"url":null,"abstract":"We present a new fanout optimization algorithm which is particularly suitable for digital circuits designed with submicron CMOS technologies. Restricting the class of fanout trees to the so-called bipolar LT-trees, the topology of the optimal fanout tree is found by means of a dynamic programming algorithm. The buffer selection is in turn performed by using a continuous buffer sizing technique based on a very accurate delay model especially developed for submicron CMOS processes. The fanout trees can distribute a signal with arbitrary polarity from the root of the tree to a set of sinks with arbitrary required time, required minimum signal slope, polarity and capacitive load. These trees can be constructed to maximize the required time at the root or to minimize the total buffer area under a required time constraint at the root. The performance of the algorithm shows several improvements with respect to conventional fanout optimization methods. More precisely, the area and delay improvements are 28% and 7%, respectively, when the algorithm is applied to entire circuits.","PeriodicalId":224802,"journal":{"name":"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fanout optimization under a submicron transistor-level delay model\",\"authors\":\"P. Cocchini, Massoud Pedram, G. Piccinini, M. Zamboni\",\"doi\":\"10.1145/288548.289085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new fanout optimization algorithm which is particularly suitable for digital circuits designed with submicron CMOS technologies. Restricting the class of fanout trees to the so-called bipolar LT-trees, the topology of the optimal fanout tree is found by means of a dynamic programming algorithm. The buffer selection is in turn performed by using a continuous buffer sizing technique based on a very accurate delay model especially developed for submicron CMOS processes. The fanout trees can distribute a signal with arbitrary polarity from the root of the tree to a set of sinks with arbitrary required time, required minimum signal slope, polarity and capacitive load. These trees can be constructed to maximize the required time at the root or to minimize the total buffer area under a required time constraint at the root. The performance of the algorithm shows several improvements with respect to conventional fanout optimization methods. More precisely, the area and delay improvements are 28% and 7%, respectively, when the algorithm is applied to entire circuits.\",\"PeriodicalId\":224802,\"journal\":{\"name\":\"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/288548.289085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/288548.289085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种新的扇出优化算法,该算法特别适用于采用亚微米CMOS技术设计的数字电路。将扇出树的类别限制为所谓的双极性lt树,通过动态规划算法找到最优扇出树的拓扑结构。缓冲器的选择反过来通过使用基于非常精确的延迟模型的连续缓冲器尺寸技术来执行,该模型是专门为亚微米CMOS工艺开发的。扇出树可以将具有任意极性的信号从树的根部分配到具有任意所需时间、所需最小信号斜率、极性和容性负载的一组汇。可以构造这些树,以使在根处所需的时间最大化,或使在根处所需的时间约束下的总缓冲区面积最小化。与传统的扇出优化方法相比,该算法的性能有了一些改进。更准确地说,当该算法应用于整个电路时,面积和延迟分别改善了28%和7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fanout optimization under a submicron transistor-level delay model
We present a new fanout optimization algorithm which is particularly suitable for digital circuits designed with submicron CMOS technologies. Restricting the class of fanout trees to the so-called bipolar LT-trees, the topology of the optimal fanout tree is found by means of a dynamic programming algorithm. The buffer selection is in turn performed by using a continuous buffer sizing technique based on a very accurate delay model especially developed for submicron CMOS processes. The fanout trees can distribute a signal with arbitrary polarity from the root of the tree to a set of sinks with arbitrary required time, required minimum signal slope, polarity and capacitive load. These trees can be constructed to maximize the required time at the root or to minimize the total buffer area under a required time constraint at the root. The performance of the algorithm shows several improvements with respect to conventional fanout optimization methods. More precisely, the area and delay improvements are 28% and 7%, respectively, when the algorithm is applied to entire circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信