J. E. Benmansour, Elhassen Benfriha, Abdelatif Bellar
{"title":"三轴稳定刚性卫星姿态系统的PD自适应控制方法","authors":"J. E. Benmansour, Elhassen Benfriha, Abdelatif Bellar","doi":"10.51485/ajss.v8i1.181","DOIUrl":null,"url":null,"abstract":"This paper deals with the attitude tracking control problem of rigid satellite with uncertainties of disturbances. An adaptive proportional derivative controller (PD) is proposed to deal with the influence of external disturbance in the attitude controller. The uncertain disturbances can be estimated through an adaptive algorithm and can be compensated in the proposed controller. The tracking error and the closed-loop system stability are ensured based on the Lyapunov analysis. using the representation of the spacecraft dynamics especially the quaternion properties.Simulation results can clearly illustrate the feasibility, the effectiveness and the performance of the planned control strategies, which have been validated by the Monte Carlo method, the results can be extended to other adaptive attitude control laws.","PeriodicalId":153848,"journal":{"name":"Algerian Journal of Signals and Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PD adaptive controller method for a three-axis stabilized rigid satellite attitude system\",\"authors\":\"J. E. Benmansour, Elhassen Benfriha, Abdelatif Bellar\",\"doi\":\"10.51485/ajss.v8i1.181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the attitude tracking control problem of rigid satellite with uncertainties of disturbances. An adaptive proportional derivative controller (PD) is proposed to deal with the influence of external disturbance in the attitude controller. The uncertain disturbances can be estimated through an adaptive algorithm and can be compensated in the proposed controller. The tracking error and the closed-loop system stability are ensured based on the Lyapunov analysis. using the representation of the spacecraft dynamics especially the quaternion properties.Simulation results can clearly illustrate the feasibility, the effectiveness and the performance of the planned control strategies, which have been validated by the Monte Carlo method, the results can be extended to other adaptive attitude control laws.\",\"PeriodicalId\":153848,\"journal\":{\"name\":\"Algerian Journal of Signals and Systems\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algerian Journal of Signals and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51485/ajss.v8i1.181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algerian Journal of Signals and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51485/ajss.v8i1.181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PD adaptive controller method for a three-axis stabilized rigid satellite attitude system
This paper deals with the attitude tracking control problem of rigid satellite with uncertainties of disturbances. An adaptive proportional derivative controller (PD) is proposed to deal with the influence of external disturbance in the attitude controller. The uncertain disturbances can be estimated through an adaptive algorithm and can be compensated in the proposed controller. The tracking error and the closed-loop system stability are ensured based on the Lyapunov analysis. using the representation of the spacecraft dynamics especially the quaternion properties.Simulation results can clearly illustrate the feasibility, the effectiveness and the performance of the planned control strategies, which have been validated by the Monte Carlo method, the results can be extended to other adaptive attitude control laws.