MLP和DNN体系结构中Mos2Synaptic晶体管的系统级性能

Aaseesh Rallapalli, Shubhadeep Bhattacharjee
{"title":"MLP和DNN体系结构中Mos2Synaptic晶体管的系统级性能","authors":"Aaseesh Rallapalli, Shubhadeep Bhattacharjee","doi":"10.1109/EDTM55494.2023.10103053","DOIUrl":null,"url":null,"abstract":"Synaptic devices promise drastically lower power consumption in artificial neural networks vis-à-vis CMOS memories. In this work, we have demonstrated $\\text{MoS}_{2}$ synaptic transistors in n-FET, p-FET, and inverter configurations. Accounting for device non-idealities, we have simulated the system-level performance for MLP and VGG-8 DNN architectures. DNNs are robust to non-idealities with $\\sim$ 15% higher accuracy but at the cost of increased complexity as compared to MLPs. This work explores the complexity-accuracy trade-offs in ANNs for offsetting non-ideal device behavior.","PeriodicalId":418413,"journal":{"name":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"System-level Performance of Mos2Synaptic Transistors in MLP and DNN Architectures\",\"authors\":\"Aaseesh Rallapalli, Shubhadeep Bhattacharjee\",\"doi\":\"10.1109/EDTM55494.2023.10103053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synaptic devices promise drastically lower power consumption in artificial neural networks vis-à-vis CMOS memories. In this work, we have demonstrated $\\\\text{MoS}_{2}$ synaptic transistors in n-FET, p-FET, and inverter configurations. Accounting for device non-idealities, we have simulated the system-level performance for MLP and VGG-8 DNN architectures. DNNs are robust to non-idealities with $\\\\sim$ 15% higher accuracy but at the cost of increased complexity as compared to MLPs. This work explores the complexity-accuracy trade-offs in ANNs for offsetting non-ideal device behavior.\",\"PeriodicalId\":418413,\"journal\":{\"name\":\"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDTM55494.2023.10103053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDTM55494.2023.10103053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与-à-vis CMOS存储器相比,Synaptic器件有望大幅降低人工神经网络的功耗。在这项工作中,我们展示了n-FET, p-FET和逆变器配置的$\text{MoS}_{2}$突触晶体管。考虑到设备的非理想性,我们模拟了MLP和VGG-8 DNN架构的系统级性能。dnn对非理想情况具有鲁棒性,精度提高15%,但与mlp相比,其代价是增加了复杂性。这项工作探讨了人工神经网络中用于抵消非理想设备行为的复杂性和精度权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
System-level Performance of Mos2Synaptic Transistors in MLP and DNN Architectures
Synaptic devices promise drastically lower power consumption in artificial neural networks vis-à-vis CMOS memories. In this work, we have demonstrated $\text{MoS}_{2}$ synaptic transistors in n-FET, p-FET, and inverter configurations. Accounting for device non-idealities, we have simulated the system-level performance for MLP and VGG-8 DNN architectures. DNNs are robust to non-idealities with $\sim$ 15% higher accuracy but at the cost of increased complexity as compared to MLPs. This work explores the complexity-accuracy trade-offs in ANNs for offsetting non-ideal device behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信