Marcin Bosk, Marija Gajic, Susanna Schwarzmann, Stanislav Lange, R. Trivisonno, C. Marquezan, T. Zinner
{"title":"利用5G QoS机制实现QoS感知的资源分配","authors":"Marcin Bosk, Marija Gajic, Susanna Schwarzmann, Stanislav Lange, R. Trivisonno, C. Marquezan, T. Zinner","doi":"10.23919/CNSM52442.2021.9615557","DOIUrl":null,"url":null,"abstract":"Network operators generally aim at providing a good level of satisfaction to their customers. Diverse application demands require the usage of beyond best-effort resource allocation mechanisms, particularly in resource-constrained environments. Such mechanisms introduce additional complexity in the control plane and need to be configured appropriately. Within 5G mobile networks, two new mechanisms for QoS-aware resource allocation are introduced. While QoS Flows enable specifying various QoS profiles on a per flow granularity, slices are dedicated virtual networks, strongly isolated against each other, with aggregated QoS guarantees. It is, however, unclear how QoS Flows and network slicing can optimally be exploited to ensure a high customer QoE while efficiently utilizing the available network resources. We address this research question and evaluate the outlined interplay using the OMNeT++ simulation environment in a multi-application scenario. We show that resource isolation induced by slicing may negatively affect application quality or system utilization, and that this impact can be overcome by finetuning the system parameters.","PeriodicalId":358223,"journal":{"name":"2021 17th International Conference on Network and Service Management (CNSM)","volume":"408 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Using 5G QoS Mechanisms to Achieve QoE-Aware Resource Allocation\",\"authors\":\"Marcin Bosk, Marija Gajic, Susanna Schwarzmann, Stanislav Lange, R. Trivisonno, C. Marquezan, T. Zinner\",\"doi\":\"10.23919/CNSM52442.2021.9615557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network operators generally aim at providing a good level of satisfaction to their customers. Diverse application demands require the usage of beyond best-effort resource allocation mechanisms, particularly in resource-constrained environments. Such mechanisms introduce additional complexity in the control plane and need to be configured appropriately. Within 5G mobile networks, two new mechanisms for QoS-aware resource allocation are introduced. While QoS Flows enable specifying various QoS profiles on a per flow granularity, slices are dedicated virtual networks, strongly isolated against each other, with aggregated QoS guarantees. It is, however, unclear how QoS Flows and network slicing can optimally be exploited to ensure a high customer QoE while efficiently utilizing the available network resources. We address this research question and evaluate the outlined interplay using the OMNeT++ simulation environment in a multi-application scenario. We show that resource isolation induced by slicing may negatively affect application quality or system utilization, and that this impact can be overcome by finetuning the system parameters.\",\"PeriodicalId\":358223,\"journal\":{\"name\":\"2021 17th International Conference on Network and Service Management (CNSM)\",\"volume\":\"408 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 17th International Conference on Network and Service Management (CNSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CNSM52442.2021.9615557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM52442.2021.9615557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using 5G QoS Mechanisms to Achieve QoE-Aware Resource Allocation
Network operators generally aim at providing a good level of satisfaction to their customers. Diverse application demands require the usage of beyond best-effort resource allocation mechanisms, particularly in resource-constrained environments. Such mechanisms introduce additional complexity in the control plane and need to be configured appropriately. Within 5G mobile networks, two new mechanisms for QoS-aware resource allocation are introduced. While QoS Flows enable specifying various QoS profiles on a per flow granularity, slices are dedicated virtual networks, strongly isolated against each other, with aggregated QoS guarantees. It is, however, unclear how QoS Flows and network slicing can optimally be exploited to ensure a high customer QoE while efficiently utilizing the available network resources. We address this research question and evaluate the outlined interplay using the OMNeT++ simulation environment in a multi-application scenario. We show that resource isolation induced by slicing may negatively affect application quality or system utilization, and that this impact can be overcome by finetuning the system parameters.