{"title":"CdS/ZnTe异质结的合成及其电物理性质","authors":"I. Lungu, L. Ghimpu, Lyudmila Gagara, T. Potlog","doi":"10.53081/mjps.2022.21-1.04","DOIUrl":null,"url":null,"abstract":"In this paper results of studying CdS/ZnTe heterostructures synthesized by the quasi-closed space sublimation method on glass substrates coated with an ITO layer are described. The electrical and photoelectric properties of the structures are studied using current–voltage and capacitance–voltage characteristics in a temperature range of 30–100 °C. Analysis of the experimental data shows that the main specific feature of CdS/ZnTe structures is the formation of a high-resistance transition layer, which affects the separation of carriers at the barrier contact. The current carrier concentration in the space charge region, which is determined from the capacitance–voltage characteristics, is 1 x 1015 cm-3; this fact suggests that one of the contacting materials—ZnTe—exhibits a high resistivity. Measurements of current–voltage characteristics in the solar cell mode give the following photoelectric parameters: open circuit voltage (UOC = 0.53 V, JSC = 27–30 A/cm2, and FF = 0.25.","PeriodicalId":291924,"journal":{"name":"The Moldavian Journal of the Physical Sciences","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and electrophysical properties of CdS/ZnTe heterojunctions\",\"authors\":\"I. Lungu, L. Ghimpu, Lyudmila Gagara, T. Potlog\",\"doi\":\"10.53081/mjps.2022.21-1.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper results of studying CdS/ZnTe heterostructures synthesized by the quasi-closed space sublimation method on glass substrates coated with an ITO layer are described. The electrical and photoelectric properties of the structures are studied using current–voltage and capacitance–voltage characteristics in a temperature range of 30–100 °C. Analysis of the experimental data shows that the main specific feature of CdS/ZnTe structures is the formation of a high-resistance transition layer, which affects the separation of carriers at the barrier contact. The current carrier concentration in the space charge region, which is determined from the capacitance–voltage characteristics, is 1 x 1015 cm-3; this fact suggests that one of the contacting materials—ZnTe—exhibits a high resistivity. Measurements of current–voltage characteristics in the solar cell mode give the following photoelectric parameters: open circuit voltage (UOC = 0.53 V, JSC = 27–30 A/cm2, and FF = 0.25.\",\"PeriodicalId\":291924,\"journal\":{\"name\":\"The Moldavian Journal of the Physical Sciences\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Moldavian Journal of the Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53081/mjps.2022.21-1.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Moldavian Journal of the Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53081/mjps.2022.21-1.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and electrophysical properties of CdS/ZnTe heterojunctions
In this paper results of studying CdS/ZnTe heterostructures synthesized by the quasi-closed space sublimation method on glass substrates coated with an ITO layer are described. The electrical and photoelectric properties of the structures are studied using current–voltage and capacitance–voltage characteristics in a temperature range of 30–100 °C. Analysis of the experimental data shows that the main specific feature of CdS/ZnTe structures is the formation of a high-resistance transition layer, which affects the separation of carriers at the barrier contact. The current carrier concentration in the space charge region, which is determined from the capacitance–voltage characteristics, is 1 x 1015 cm-3; this fact suggests that one of the contacting materials—ZnTe—exhibits a high resistivity. Measurements of current–voltage characteristics in the solar cell mode give the following photoelectric parameters: open circuit voltage (UOC = 0.53 V, JSC = 27–30 A/cm2, and FF = 0.25.