基于径向基函数网络的医学检查结果预测

Gil-Jin Jang, Minho Kim, Young-Won Kim, Jaehun Choi
{"title":"基于径向基函数网络的医学检查结果预测","authors":"Gil-Jin Jang, Minho Kim, Young-Won Kim, Jaehun Choi","doi":"10.1109/ICCE-ASIA.2016.7804745","DOIUrl":null,"url":null,"abstract":"This paper proposes a method of predicting future medical examination measurements given the past values. The medical examinations considered in this paper are blood sugar level, low and high blood pressures, and cholesterol level. This paper uses a specific type of artificial neural networks, radial-basis function network (RBFN), to approximate mapping from the past medical measurements to that of the upcoming year, in order to help the subjects be aware of the signs of unusual health states without consulting with doctors. Experimental results show that the RBFN-based estimation is superior to the conventional linear regression in terms of prediction accuracy of the future examination measurements. The proposed method is expected to be implemented in a handy consumer electronic devices such as Smartphones without adding extra hardware parts provided that the history of the medical examination measurements are available.","PeriodicalId":229557,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Prediction of medical examination results using radial-basis function networks\",\"authors\":\"Gil-Jin Jang, Minho Kim, Young-Won Kim, Jaehun Choi\",\"doi\":\"10.1109/ICCE-ASIA.2016.7804745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method of predicting future medical examination measurements given the past values. The medical examinations considered in this paper are blood sugar level, low and high blood pressures, and cholesterol level. This paper uses a specific type of artificial neural networks, radial-basis function network (RBFN), to approximate mapping from the past medical measurements to that of the upcoming year, in order to help the subjects be aware of the signs of unusual health states without consulting with doctors. Experimental results show that the RBFN-based estimation is superior to the conventional linear regression in terms of prediction accuracy of the future examination measurements. The proposed method is expected to be implemented in a handy consumer electronic devices such as Smartphones without adding extra hardware parts provided that the history of the medical examination measurements are available.\",\"PeriodicalId\":229557,\"journal\":{\"name\":\"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-ASIA.2016.7804745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-ASIA.2016.7804745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种在给定过去值的情况下预测未来医学检查测量值的方法。本文考虑的医学检查是血糖水平、低血压和高血压、胆固醇水平。本文使用一种特殊类型的人工神经网络,径向基函数网络(RBFN),将过去的医疗测量近似映射到来年的医疗测量,以帮助受试者在不咨询医生的情况下意识到异常健康状态的迹象。实验结果表明,基于rbfn的估计在对未来考试测量的预测精度方面优于传统的线性回归。如果有医疗检查测量的历史记录,该方法有望在智能手机等方便的消费电子设备中实现,而无需增加额外的硬件部件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of medical examination results using radial-basis function networks
This paper proposes a method of predicting future medical examination measurements given the past values. The medical examinations considered in this paper are blood sugar level, low and high blood pressures, and cholesterol level. This paper uses a specific type of artificial neural networks, radial-basis function network (RBFN), to approximate mapping from the past medical measurements to that of the upcoming year, in order to help the subjects be aware of the signs of unusual health states without consulting with doctors. Experimental results show that the RBFN-based estimation is superior to the conventional linear regression in terms of prediction accuracy of the future examination measurements. The proposed method is expected to be implemented in a handy consumer electronic devices such as Smartphones without adding extra hardware parts provided that the history of the medical examination measurements are available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信