一种基于mae感知的激光雷达ROI采样模型

Quan-Dung Pham, X. Nguyen, Hyuk-Jae Lee, Hyun Kim
{"title":"一种基于mae感知的激光雷达ROI采样模型","authors":"Quan-Dung Pham, X. Nguyen, Hyuk-Jae Lee, Hyun Kim","doi":"10.1109/ISOCC50952.2020.9333034","DOIUrl":null,"url":null,"abstract":"Light Detection and Ranging (LiDAR) sensors have relatively low resolutions, require considerable time to acquire the laser range measurement, and store large-scale point clouds. In order to address these issues, this paper presents a sampling algorithm which finds the optimal sampling rates in a region of interest (ROI) to minimize the total mean-absolute-error (MAE). Eventually, MAEs in both ROIs and overall scene decrease significantly. Experimental results show that the proposed scheme reduces the MAE in the object area by up to 63.3% and that in the overall scene by up to 34.2%.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An MAE-aware ROI Sampling Model for LiDAR\",\"authors\":\"Quan-Dung Pham, X. Nguyen, Hyuk-Jae Lee, Hyun Kim\",\"doi\":\"10.1109/ISOCC50952.2020.9333034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light Detection and Ranging (LiDAR) sensors have relatively low resolutions, require considerable time to acquire the laser range measurement, and store large-scale point clouds. In order to address these issues, this paper presents a sampling algorithm which finds the optimal sampling rates in a region of interest (ROI) to minimize the total mean-absolute-error (MAE). Eventually, MAEs in both ROIs and overall scene decrease significantly. Experimental results show that the proposed scheme reduces the MAE in the object area by up to 63.3% and that in the overall scene by up to 34.2%.\",\"PeriodicalId\":270577,\"journal\":{\"name\":\"2020 International SoC Design Conference (ISOCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC50952.2020.9333034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9333034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光探测和测距(LiDAR)传感器具有相对较低的分辨率,需要相当长的时间来获取激光距离测量,并且存储大规模的点云。为了解决这些问题,本文提出了一种采样算法,该算法在感兴趣区域(ROI)中找到最优采样率,以最小化总平均绝对误差(MAE)。最终,roi和整体场景的MAEs都显著降低。实验结果表明,该方案可将目标区域的MAE降低63.3%,将整个场景的MAE降低34.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An MAE-aware ROI Sampling Model for LiDAR
Light Detection and Ranging (LiDAR) sensors have relatively low resolutions, require considerable time to acquire the laser range measurement, and store large-scale point clouds. In order to address these issues, this paper presents a sampling algorithm which finds the optimal sampling rates in a region of interest (ROI) to minimize the total mean-absolute-error (MAE). Eventually, MAEs in both ROIs and overall scene decrease significantly. Experimental results show that the proposed scheme reduces the MAE in the object area by up to 63.3% and that in the overall scene by up to 34.2%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信