基于fpga的能量采集嵌入式系统评估平台

Roberto Paulo Dias Alcantara Filho, O. A. D. L. Junior, C. Júnior
{"title":"基于fpga的能量采集嵌入式系统评估平台","authors":"Roberto Paulo Dias Alcantara Filho, O. A. D. L. Junior, C. Júnior","doi":"10.1145/3338852.3339863","DOIUrl":null,"url":null,"abstract":"Extreme low-power embedded systems are essential in Smart Cities and the Internet of Things, once these systems are responsible for acquiring, processing, and transmitting valuable environmental data. Some of these systems should run for a very long time without any human intervention, even for batteries replacement. Energy harvesting technologies allow embedded systems to be powered up from the environment by converting surrounding energy sources into electrical energy. However, energy-harvesting embedded systems (EHES) heavily depends on the nature of the energy sources, which are mostly uncontrollable and unpredictable. To improve the evaluation of energy management techniques in EHES, we propose the emulation of I-V curves of low-power energy harvesting transducers. An FPGA-based platform controls the energy source emulation combined with an integrated logic analyzer, which allows real-time data gathering from the EHES in multiple evaluation scenarios. The experiments show that the platform replicates solar energy scenarios with only 0.56% mean error.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An FPGA-Based Evaluation Platform for Energy Harvesting Embedded Systems\",\"authors\":\"Roberto Paulo Dias Alcantara Filho, O. A. D. L. Junior, C. Júnior\",\"doi\":\"10.1145/3338852.3339863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme low-power embedded systems are essential in Smart Cities and the Internet of Things, once these systems are responsible for acquiring, processing, and transmitting valuable environmental data. Some of these systems should run for a very long time without any human intervention, even for batteries replacement. Energy harvesting technologies allow embedded systems to be powered up from the environment by converting surrounding energy sources into electrical energy. However, energy-harvesting embedded systems (EHES) heavily depends on the nature of the energy sources, which are mostly uncontrollable and unpredictable. To improve the evaluation of energy management techniques in EHES, we propose the emulation of I-V curves of low-power energy harvesting transducers. An FPGA-based platform controls the energy source emulation combined with an integrated logic analyzer, which allows real-time data gathering from the EHES in multiple evaluation scenarios. The experiments show that the platform replicates solar energy scenarios with only 0.56% mean error.\",\"PeriodicalId\":184401,\"journal\":{\"name\":\"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3338852.3339863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338852.3339863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

超低功耗嵌入式系统在智慧城市和物联网中至关重要,因为这些系统负责获取、处理和传输有价值的环境数据。其中一些系统应该在没有任何人为干预的情况下运行很长时间,即使是更换电池。能量收集技术允许嵌入式系统通过将周围的能源转换成电能来为环境供电。然而,能量收集嵌入式系统(EHES)在很大程度上取决于能源的性质,而这些能源大多是不可控和不可预测的。为了提高对EHES中能量管理技术的评估,我们提出了低功率能量收集传感器的I-V曲线仿真。基于fpga的平台控制能源仿真,并结合集成逻辑分析仪,允许在多种评估场景中从EHES实时收集数据。实验表明,该平台模拟太阳能场景的平均误差仅为0.56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An FPGA-Based Evaluation Platform for Energy Harvesting Embedded Systems
Extreme low-power embedded systems are essential in Smart Cities and the Internet of Things, once these systems are responsible for acquiring, processing, and transmitting valuable environmental data. Some of these systems should run for a very long time without any human intervention, even for batteries replacement. Energy harvesting technologies allow embedded systems to be powered up from the environment by converting surrounding energy sources into electrical energy. However, energy-harvesting embedded systems (EHES) heavily depends on the nature of the energy sources, which are mostly uncontrollable and unpredictable. To improve the evaluation of energy management techniques in EHES, we propose the emulation of I-V curves of low-power energy harvesting transducers. An FPGA-based platform controls the energy source emulation combined with an integrated logic analyzer, which allows real-time data gathering from the EHES in multiple evaluation scenarios. The experiments show that the platform replicates solar energy scenarios with only 0.56% mean error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信