32/28nm BEOL铜隙填充金属薄膜的挑战

X. Jing, J. Tan, Jiquan Liu
{"title":"32/28nm BEOL铜隙填充金属薄膜的挑战","authors":"X. Jing, J. Tan, Jiquan Liu","doi":"10.1109/CSTIC.2015.7153409","DOIUrl":null,"url":null,"abstract":"With the logic device size shrinking to 32/28nm and beyond, ultra- low k has been introduced to Cu interconnect, which makes Cu gap-fill very challenging. This paper has summarized metal hard mask, Ta(N) barrier, Cu seed and electroplating (ECP) challenges for 28nm BEOL Cu gap-fill. Metal hard mask thickness and stress greatly impact gap fill performance and need to be optimized. Thinner barrier helps meet gap-fill and Via Rc requirements, but it may compromise its reliability robustness. In order to have good Cu gap-fill at both trench and via, Cu seed needs to be optimized at top overhang and sidewall step coverage, or it requires a fair balance between the two tuning knobs. ECP chemical selection, additive concentration, and entry also show their critical roles in the gap-fill performance.","PeriodicalId":130108,"journal":{"name":"2015 China Semiconductor Technology International Conference","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"32/28nm BEOL Cu gap-fill challenges for metal film\",\"authors\":\"X. Jing, J. Tan, Jiquan Liu\",\"doi\":\"10.1109/CSTIC.2015.7153409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the logic device size shrinking to 32/28nm and beyond, ultra- low k has been introduced to Cu interconnect, which makes Cu gap-fill very challenging. This paper has summarized metal hard mask, Ta(N) barrier, Cu seed and electroplating (ECP) challenges for 28nm BEOL Cu gap-fill. Metal hard mask thickness and stress greatly impact gap fill performance and need to be optimized. Thinner barrier helps meet gap-fill and Via Rc requirements, but it may compromise its reliability robustness. In order to have good Cu gap-fill at both trench and via, Cu seed needs to be optimized at top overhang and sidewall step coverage, or it requires a fair balance between the two tuning knobs. ECP chemical selection, additive concentration, and entry also show their critical roles in the gap-fill performance.\",\"PeriodicalId\":130108,\"journal\":{\"name\":\"2015 China Semiconductor Technology International Conference\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 China Semiconductor Technology International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSTIC.2015.7153409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 China Semiconductor Technology International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSTIC.2015.7153409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着逻辑器件尺寸缩小到32/28nm及以下,超低k被引入到Cu互连中,这使得Cu隙填充变得非常具有挑战性。本文综述了金属硬掩膜、Ta(N)势垒、Cu种子和电镀(ECP)技术在28nm BEOL铜隙填充中的挑战。金属硬掩模的厚度和应力对补隙性能影响很大,需要进行优化。更薄的屏障有助于满足间隙填充和Via Rc要求,但可能会损害其可靠性和鲁棒性。为了在沟槽和通孔处都有良好的铜空隙填充,需要优化顶部悬垂和侧壁台阶的铜种子覆盖,或者需要在两个调谐旋钮之间达到合理的平衡。ECP的化学选择、添加剂浓度和进入量也对间隙填充性能起关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
32/28nm BEOL Cu gap-fill challenges for metal film
With the logic device size shrinking to 32/28nm and beyond, ultra- low k has been introduced to Cu interconnect, which makes Cu gap-fill very challenging. This paper has summarized metal hard mask, Ta(N) barrier, Cu seed and electroplating (ECP) challenges for 28nm BEOL Cu gap-fill. Metal hard mask thickness and stress greatly impact gap fill performance and need to be optimized. Thinner barrier helps meet gap-fill and Via Rc requirements, but it may compromise its reliability robustness. In order to have good Cu gap-fill at both trench and via, Cu seed needs to be optimized at top overhang and sidewall step coverage, or it requires a fair balance between the two tuning knobs. ECP chemical selection, additive concentration, and entry also show their critical roles in the gap-fill performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信