{"title":"低维搜索空间中最优多机器人路径规划","authors":"Cornelia Ferner, Glenn Wagner, H. Choset","doi":"10.1109/ICRA.2013.6631119","DOIUrl":null,"url":null,"abstract":"We believe the core of handling the complexity of coordinated multiagent search lies in identifying which subsets of robots can be safely decoupled, and hence planned for in a lower dimensional space. Our work, as well as those of others take that perspective. In our prior work, we introduced an approach called subdimensional expansion for constructing low-dimensional but sufficient search spaces for multirobot path planning, and an implementation for graph search called M*. Subdimensional expansion dynamically increases the dimensionality of the search space in regions featuring significant robot-robot interactions. In this paper, we integrate M* with Meta-Agent Constraint-Based Search (MA-CBS), a planning framework that seeks to couple repeatedly colliding robots allowing for other robots to be planned in low-dimensional search space. M* is also integrated with operator decomposition (OD), an A*-variant performing lazy search of the outneighbors of a given vertex. We show that the combined algorithm demonstrates state of the art performance.","PeriodicalId":259746,"journal":{"name":"2013 IEEE International Conference on Robotics and Automation","volume":"360 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"ODrM* optimal multirobot path planning in low dimensional search spaces\",\"authors\":\"Cornelia Ferner, Glenn Wagner, H. Choset\",\"doi\":\"10.1109/ICRA.2013.6631119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We believe the core of handling the complexity of coordinated multiagent search lies in identifying which subsets of robots can be safely decoupled, and hence planned for in a lower dimensional space. Our work, as well as those of others take that perspective. In our prior work, we introduced an approach called subdimensional expansion for constructing low-dimensional but sufficient search spaces for multirobot path planning, and an implementation for graph search called M*. Subdimensional expansion dynamically increases the dimensionality of the search space in regions featuring significant robot-robot interactions. In this paper, we integrate M* with Meta-Agent Constraint-Based Search (MA-CBS), a planning framework that seeks to couple repeatedly colliding robots allowing for other robots to be planned in low-dimensional search space. M* is also integrated with operator decomposition (OD), an A*-variant performing lazy search of the outneighbors of a given vertex. We show that the combined algorithm demonstrates state of the art performance.\",\"PeriodicalId\":259746,\"journal\":{\"name\":\"2013 IEEE International Conference on Robotics and Automation\",\"volume\":\"360 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2013.6631119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2013.6631119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ODrM* optimal multirobot path planning in low dimensional search spaces
We believe the core of handling the complexity of coordinated multiagent search lies in identifying which subsets of robots can be safely decoupled, and hence planned for in a lower dimensional space. Our work, as well as those of others take that perspective. In our prior work, we introduced an approach called subdimensional expansion for constructing low-dimensional but sufficient search spaces for multirobot path planning, and an implementation for graph search called M*. Subdimensional expansion dynamically increases the dimensionality of the search space in regions featuring significant robot-robot interactions. In this paper, we integrate M* with Meta-Agent Constraint-Based Search (MA-CBS), a planning framework that seeks to couple repeatedly colliding robots allowing for other robots to be planned in low-dimensional search space. M* is also integrated with operator decomposition (OD), an A*-variant performing lazy search of the outneighbors of a given vertex. We show that the combined algorithm demonstrates state of the art performance.