基于全向视觉的增量拓扑映射

Christoffer Valgren, A. Lilienthal, T. Duckett
{"title":"基于全向视觉的增量拓扑映射","authors":"Christoffer Valgren, A. Lilienthal, T. Duckett","doi":"10.1109/IROS.2006.282583","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm that builds topological maps, using omnidirectional vision as the only sensor modality. Local features are extracted from images obtained in sequence, and are used both to cluster the images into nodes and to detect links between the nodes. The algorithm is incremental, reducing the computational requirements of the corresponding batch algorithm. Experimental results in a complex, indoor environment show that the algorithm produces topologically correct maps, closing loops without suffering from perceptual aliasing or false links. Robustness to lighting variations was further demonstrated by building correct maps from combined multiple datasets collected over a period of 2 months","PeriodicalId":237562,"journal":{"name":"2006 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Incremental Topological Mapping Using Omnidirectional Vision\",\"authors\":\"Christoffer Valgren, A. Lilienthal, T. Duckett\",\"doi\":\"10.1109/IROS.2006.282583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an algorithm that builds topological maps, using omnidirectional vision as the only sensor modality. Local features are extracted from images obtained in sequence, and are used both to cluster the images into nodes and to detect links between the nodes. The algorithm is incremental, reducing the computational requirements of the corresponding batch algorithm. Experimental results in a complex, indoor environment show that the algorithm produces topologically correct maps, closing loops without suffering from perceptual aliasing or false links. Robustness to lighting variations was further demonstrated by building correct maps from combined multiple datasets collected over a period of 2 months\",\"PeriodicalId\":237562,\"journal\":{\"name\":\"2006 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2006.282583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2006.282583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

本文提出了一种构建拓扑地图的算法,该算法使用全向视觉作为唯一的传感器模式。从序列中获得的图像中提取局部特征,用于将图像聚类到节点中,并检测节点之间的链接。该算法是增量的,减少了相应批处理算法的计算量。在复杂的室内环境中的实验结果表明,该算法产生拓扑正确的地图,闭合环路,而不会受到感知混叠或虚假链接的影响。通过在2个月的时间内收集多个数据集,构建正确的地图,进一步证明了对光照变化的鲁棒性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incremental Topological Mapping Using Omnidirectional Vision
This paper presents an algorithm that builds topological maps, using omnidirectional vision as the only sensor modality. Local features are extracted from images obtained in sequence, and are used both to cluster the images into nodes and to detect links between the nodes. The algorithm is incremental, reducing the computational requirements of the corresponding batch algorithm. Experimental results in a complex, indoor environment show that the algorithm produces topologically correct maps, closing loops without suffering from perceptual aliasing or false links. Robustness to lighting variations was further demonstrated by building correct maps from combined multiple datasets collected over a period of 2 months
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信