{"title":"气动手部康复装置设计与控制的初步研究","authors":"Houcheng Li, L. Cheng","doi":"10.1109/YAC.2017.7967530","DOIUrl":null,"url":null,"abstract":"In recent years, the robotic devices have been used in hand rehabilitation training practice. The majority of existing robotic devices for rehabilitation belong to the rigid exoskeleton. However, rigid exoskeletons may have some limitations such as heavy weight, un-safety and inconvenience. This paper presents a device designed to help post-stroke patients to stretch their spastic hands. This hand rehabilitation device actuator is fabricated by soft material, powered with fluid pressure, and embedded in one glove surface. The distinguished features of this device are: safety, low cost, light weight, convenience and pneumatic actuation. In clinical practice, rehabilitation therapists should help the post-stroke patients to stretch fingers to a desired joint position. Therefore, the control objective of the proposed hand rehabilitation device is to drive the patient's finger bending angle to a predesigned position. To this end, curvature sensors embedded in the glove are used to measure the finger's bending angle. A commercial data glove is used to collect the actual finger's bending angle for calibrating the curvature sensors based on a three-layer back-propagation (BP) neural network. Then the error between the designed joint position and the actual joint position can be calculated. An error proportional control strategy is adopted for the positioning control objective (the controller's input is the pump speed). Finally, experiments are conducted to validate the effectiveness of control method and the capacity of the proposed hand rehabilitation device.","PeriodicalId":232358,"journal":{"name":"2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Preliminary study on the design and control of a pneumatically-actuated hand rehabilitation device\",\"authors\":\"Houcheng Li, L. Cheng\",\"doi\":\"10.1109/YAC.2017.7967530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the robotic devices have been used in hand rehabilitation training practice. The majority of existing robotic devices for rehabilitation belong to the rigid exoskeleton. However, rigid exoskeletons may have some limitations such as heavy weight, un-safety and inconvenience. This paper presents a device designed to help post-stroke patients to stretch their spastic hands. This hand rehabilitation device actuator is fabricated by soft material, powered with fluid pressure, and embedded in one glove surface. The distinguished features of this device are: safety, low cost, light weight, convenience and pneumatic actuation. In clinical practice, rehabilitation therapists should help the post-stroke patients to stretch fingers to a desired joint position. Therefore, the control objective of the proposed hand rehabilitation device is to drive the patient's finger bending angle to a predesigned position. To this end, curvature sensors embedded in the glove are used to measure the finger's bending angle. A commercial data glove is used to collect the actual finger's bending angle for calibrating the curvature sensors based on a three-layer back-propagation (BP) neural network. Then the error between the designed joint position and the actual joint position can be calculated. An error proportional control strategy is adopted for the positioning control objective (the controller's input is the pump speed). Finally, experiments are conducted to validate the effectiveness of control method and the capacity of the proposed hand rehabilitation device.\",\"PeriodicalId\":232358,\"journal\":{\"name\":\"2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/YAC.2017.7967530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC.2017.7967530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preliminary study on the design and control of a pneumatically-actuated hand rehabilitation device
In recent years, the robotic devices have been used in hand rehabilitation training practice. The majority of existing robotic devices for rehabilitation belong to the rigid exoskeleton. However, rigid exoskeletons may have some limitations such as heavy weight, un-safety and inconvenience. This paper presents a device designed to help post-stroke patients to stretch their spastic hands. This hand rehabilitation device actuator is fabricated by soft material, powered with fluid pressure, and embedded in one glove surface. The distinguished features of this device are: safety, low cost, light weight, convenience and pneumatic actuation. In clinical practice, rehabilitation therapists should help the post-stroke patients to stretch fingers to a desired joint position. Therefore, the control objective of the proposed hand rehabilitation device is to drive the patient's finger bending angle to a predesigned position. To this end, curvature sensors embedded in the glove are used to measure the finger's bending angle. A commercial data glove is used to collect the actual finger's bending angle for calibrating the curvature sensors based on a three-layer back-propagation (BP) neural network. Then the error between the designed joint position and the actual joint position can be calculated. An error proportional control strategy is adopted for the positioning control objective (the controller's input is the pump speed). Finally, experiments are conducted to validate the effectiveness of control method and the capacity of the proposed hand rehabilitation device.