校准双金属灰度光掩膜的光刻胶响应,用于精密微光学制造

G. Chapman, Reza Qarehbaghi, S. Roche
{"title":"校准双金属灰度光掩膜的光刻胶响应,用于精密微光学制造","authors":"G. Chapman, Reza Qarehbaghi, S. Roche","doi":"10.1117/12.2041429","DOIUrl":null,"url":null,"abstract":"Microfabricating high resolution micro-optics structures requires shape control to <1/8th wavelength (~60nm) in both vertical and horizontal surface precision. Grayscale bimetallic photomasks are bi-layer thermal resists consisting of two thin layers of Bi-on-Indium or Tin-on-Indium. A focused laser spot creates a thermal metal oxide with a controllably transparency set by the beam power of optical density from ~3OD (unexposed) to <0.22OD (fully exposed). A directwrite raster-scan photomask laser system with a CW Argon-ion laser at 514nm for the bimetallic writing and 457nm line for measuring the OD change used a feedback-controlled Gaussian beam to achieve 256-level grayscale masks. Setting the graylevels required to achieve uniform vertical steps in the photoresist requires adjustment in transparency based on the exact response curves of a given resist/development process. An initial model is developed using the classic resist threshold dose exposure D0 and dose to clear Dc creating a power law relation between the required exposure dose for each thickness step and the mask transparency. However real resists behave differently than the simple model near the threshold requiring careful calibrating of mask graylevel transparencies with the photoresist response curve for a given resist/development process. Test structures ranging from steps to ramps and complex patterns were examined via both SEM and profilometry from the resulting bimetallic grayscale masks. Secondary corrections modify the needed bimetallic OD due to the exposure source spectrum differences from the 457nm measurement. This enhances the patterning of micro-optic and 3D MEMS structures.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Calibrating bimetallic grayscale photomasks to photoresist response for precise micro-optics fabrication\",\"authors\":\"G. Chapman, Reza Qarehbaghi, S. Roche\",\"doi\":\"10.1117/12.2041429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microfabricating high resolution micro-optics structures requires shape control to <1/8th wavelength (~60nm) in both vertical and horizontal surface precision. Grayscale bimetallic photomasks are bi-layer thermal resists consisting of two thin layers of Bi-on-Indium or Tin-on-Indium. A focused laser spot creates a thermal metal oxide with a controllably transparency set by the beam power of optical density from ~3OD (unexposed) to <0.22OD (fully exposed). A directwrite raster-scan photomask laser system with a CW Argon-ion laser at 514nm for the bimetallic writing and 457nm line for measuring the OD change used a feedback-controlled Gaussian beam to achieve 256-level grayscale masks. Setting the graylevels required to achieve uniform vertical steps in the photoresist requires adjustment in transparency based on the exact response curves of a given resist/development process. An initial model is developed using the classic resist threshold dose exposure D0 and dose to clear Dc creating a power law relation between the required exposure dose for each thickness step and the mask transparency. However real resists behave differently than the simple model near the threshold requiring careful calibrating of mask graylevel transparencies with the photoresist response curve for a given resist/development process. Test structures ranging from steps to ramps and complex patterns were examined via both SEM and profilometry from the resulting bimetallic grayscale masks. Secondary corrections modify the needed bimetallic OD due to the exposure source spectrum differences from the 457nm measurement. This enhances the patterning of micro-optic and 3D MEMS structures.\",\"PeriodicalId\":395835,\"journal\":{\"name\":\"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2041429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2041429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

微加工高分辨率微光学结构要求在垂直和水平表面精度上控制在小于1/8波长(~60nm)。灰度双金属掩膜是由两层薄的bi- on-铟或tin -on-铟组成的双层热阻片。聚焦的激光光斑产生一种热金属氧化物,其透明度可由光密度的光束功率控制,从~3OD(未曝光)到<0.22OD(完全曝光)。直接写入光栅扫描掩模激光系统采用反馈控制的高斯光束,在514nm处进行双金属写入,在457nm处测量外径变化,实现了256级灰度掩模。设置在光刻胶中实现均匀垂直步长所需的灰度级需要根据给定光刻胶/显影过程的精确响应曲线调整透明度。使用经典的抗阻阈值剂量暴露D0和清除Dc的剂量建立了初始模型,在每个厚度步骤所需的暴露剂量与掩膜透明度之间建立了幂律关系。然而,真实的抗蚀剂的行为与阈值附近的简单模型不同,需要仔细校准给定抗蚀剂/显影过程的光抗蚀剂响应曲线的掩膜灰度透明度。测试结构范围从台阶到坡道和复杂的图案,通过扫描电镜和轮廓术从所得的双金属灰度掩模检查。由于曝光源光谱与457nm测量值的差异,二次修正修正了所需的双金属外径。这增强了微光学和3D MEMS结构的图像化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibrating bimetallic grayscale photomasks to photoresist response for precise micro-optics fabrication
Microfabricating high resolution micro-optics structures requires shape control to <1/8th wavelength (~60nm) in both vertical and horizontal surface precision. Grayscale bimetallic photomasks are bi-layer thermal resists consisting of two thin layers of Bi-on-Indium or Tin-on-Indium. A focused laser spot creates a thermal metal oxide with a controllably transparency set by the beam power of optical density from ~3OD (unexposed) to <0.22OD (fully exposed). A directwrite raster-scan photomask laser system with a CW Argon-ion laser at 514nm for the bimetallic writing and 457nm line for measuring the OD change used a feedback-controlled Gaussian beam to achieve 256-level grayscale masks. Setting the graylevels required to achieve uniform vertical steps in the photoresist requires adjustment in transparency based on the exact response curves of a given resist/development process. An initial model is developed using the classic resist threshold dose exposure D0 and dose to clear Dc creating a power law relation between the required exposure dose for each thickness step and the mask transparency. However real resists behave differently than the simple model near the threshold requiring careful calibrating of mask graylevel transparencies with the photoresist response curve for a given resist/development process. Test structures ranging from steps to ramps and complex patterns were examined via both SEM and profilometry from the resulting bimetallic grayscale masks. Secondary corrections modify the needed bimetallic OD due to the exposure source spectrum differences from the 457nm measurement. This enhances the patterning of micro-optic and 3D MEMS structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信