等纹响应的分数阶拉普拉斯算子的二阶近似

T. Freeborn, B. Maundy, A. Elwakil
{"title":"等纹响应的分数阶拉普拉斯算子的二阶近似","authors":"T. Freeborn, B. Maundy, A. Elwakil","doi":"10.1109/MWSCAS.2010.5548870","DOIUrl":null,"url":null,"abstract":"In this paper we propose a modification to a second order approximation of the fractional-order Laplacian operator, sα, where 0 < α < 1. We show how this proposed modification can be used to change the ripple error of both the magnitude and phase responses of the approximation when compared to the ideal case. Equal-ripple magnitude and phase responses that have both less cumulative error and less maximum ripple deviation are presented using this modification. A 1st order lowpass filter with fractional step of 0.8, that is of order 1.8, is implemented using the proposed approximation. Experimental results verify the operation of this approximation in the realization of the fractional step filter.","PeriodicalId":245322,"journal":{"name":"2010 53rd IEEE International Midwest Symposium on Circuits and Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Second order approximation of the fractional laplacian operator for equal-ripple response\",\"authors\":\"T. Freeborn, B. Maundy, A. Elwakil\",\"doi\":\"10.1109/MWSCAS.2010.5548870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a modification to a second order approximation of the fractional-order Laplacian operator, sα, where 0 < α < 1. We show how this proposed modification can be used to change the ripple error of both the magnitude and phase responses of the approximation when compared to the ideal case. Equal-ripple magnitude and phase responses that have both less cumulative error and less maximum ripple deviation are presented using this modification. A 1st order lowpass filter with fractional step of 0.8, that is of order 1.8, is implemented using the proposed approximation. Experimental results verify the operation of this approximation in the realization of the fractional step filter.\",\"PeriodicalId\":245322,\"journal\":{\"name\":\"2010 53rd IEEE International Midwest Symposium on Circuits and Systems\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 53rd IEEE International Midwest Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2010.5548870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 53rd IEEE International Midwest Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2010.5548870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文给出了分数阶拉普拉斯算子sα的二阶近似的一个修正,其中0 < α < 1。我们展示了与理想情况相比,如何使用这种提议的修改来改变近似的幅度和相位响应的纹波误差。采用该方法得到的等纹波幅值和相位响应具有较小的累积误差和较小的最大纹波偏差。利用所提出的近似实现了分数阶步长为0.8的一阶低通滤波器,即1.8阶滤波器。实验结果验证了该近似算法在分步滤波器实现中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Second order approximation of the fractional laplacian operator for equal-ripple response
In this paper we propose a modification to a second order approximation of the fractional-order Laplacian operator, sα, where 0 < α < 1. We show how this proposed modification can be used to change the ripple error of both the magnitude and phase responses of the approximation when compared to the ideal case. Equal-ripple magnitude and phase responses that have both less cumulative error and less maximum ripple deviation are presented using this modification. A 1st order lowpass filter with fractional step of 0.8, that is of order 1.8, is implemented using the proposed approximation. Experimental results verify the operation of this approximation in the realization of the fractional step filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信