基于lqr的全身推力恢复线性接触建模及随机参数优化

Simon Bäuerle, Lukas Kaul, T. Asfour
{"title":"基于lqr的全身推力恢复线性接触建模及随机参数优化","authors":"Simon Bäuerle, Lukas Kaul, T. Asfour","doi":"10.1109/HUMANOIDS.2018.8624921","DOIUrl":null,"url":null,"abstract":"In this paper we extend the line of research that aims at applying linear optimal control approaches with quadratic cost (LQR) to the inherently non-linear control problem of whole-body balancing for push recovery of humanoid robots. The non-linearity of the system is addressed in the controller design by optimization in the weight-space of the cost function in order to maximize balancing performance. We use stochastic sampling-based, gradient-free optimization over the large design parameter space of the whole-body controller to efficiently cope with the unknown relation between the cost function and the balancing performance. We further investigate three different linear ground contact models and evaluate their influence on the overall controller performance. We demonstrate that parameter optimization and novel ground contact models can be used to design a linear balancing controller that produces human-like whole-body motions in physics simulation-based push recovery experiments, simultaneously considering joint angles, center of mass and angular momentum.","PeriodicalId":433345,"journal":{"name":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Linear Contact Modeling and Stochastic Parameter Optimization for LQR-Based Whole-Body Push Recovery\",\"authors\":\"Simon Bäuerle, Lukas Kaul, T. Asfour\",\"doi\":\"10.1109/HUMANOIDS.2018.8624921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we extend the line of research that aims at applying linear optimal control approaches with quadratic cost (LQR) to the inherently non-linear control problem of whole-body balancing for push recovery of humanoid robots. The non-linearity of the system is addressed in the controller design by optimization in the weight-space of the cost function in order to maximize balancing performance. We use stochastic sampling-based, gradient-free optimization over the large design parameter space of the whole-body controller to efficiently cope with the unknown relation between the cost function and the balancing performance. We further investigate three different linear ground contact models and evaluate their influence on the overall controller performance. We demonstrate that parameter optimization and novel ground contact models can be used to design a linear balancing controller that produces human-like whole-body motions in physics simulation-based push recovery experiments, simultaneously considering joint angles, center of mass and angular momentum.\",\"PeriodicalId\":433345,\"journal\":{\"name\":\"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS.2018.8624921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2018.8624921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们扩展了研究的路线,旨在将线性最优控制方法与二次代价(LQR)应用于类人机器人全身平衡的内在非线性控制问题。在控制器设计中,通过优化代价函数的权重空间来解决系统的非线性问题,使平衡性能最大化。我们采用基于随机抽样的无梯度优化方法,对全身控制器的大设计参数空间进行优化,以有效地处理成本函数与平衡性能之间的未知关系。我们进一步研究了三种不同的线性接地模型,并评估了它们对控制器整体性能的影响。我们证明了参数优化和新颖的地面接触模型可以用于设计一个线性平衡控制器,在基于物理仿真的推恢复实验中,同时考虑关节角、质心和角动量,产生类似人的全身运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear Contact Modeling and Stochastic Parameter Optimization for LQR-Based Whole-Body Push Recovery
In this paper we extend the line of research that aims at applying linear optimal control approaches with quadratic cost (LQR) to the inherently non-linear control problem of whole-body balancing for push recovery of humanoid robots. The non-linearity of the system is addressed in the controller design by optimization in the weight-space of the cost function in order to maximize balancing performance. We use stochastic sampling-based, gradient-free optimization over the large design parameter space of the whole-body controller to efficiently cope with the unknown relation between the cost function and the balancing performance. We further investigate three different linear ground contact models and evaluate their influence on the overall controller performance. We demonstrate that parameter optimization and novel ground contact models can be used to design a linear balancing controller that produces human-like whole-body motions in physics simulation-based push recovery experiments, simultaneously considering joint angles, center of mass and angular momentum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信