从不规则间距数据估计自然地形的分形维数

K. Arakawa, E. Krotkov
{"title":"从不规则间距数据估计自然地形的分形维数","authors":"K. Arakawa, E. Krotkov","doi":"10.1109/IROS.1993.583781","DOIUrl":null,"url":null,"abstract":"The authors propose a method to estimate terrain roughness directly from the depth information. They estimate the fractal dimension of terrain using the fractal Brownian function approach. For experiments with real data, they extend the approach to accommodate irreguarly sampled elevation data supplied by a scanning laser rangefinder. Applying this extended method to noisy range imagery of natural terrain (sand and rocks), the authors find that the resulting estimates of fractal dimension correlate closely to human perception of the roughness of the terrain, showing that the fractal dimension of the sensed point set is a practical and effective measure of the roughness of natural terrain.","PeriodicalId":299306,"journal":{"name":"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Estimating fractal dimension of natural terrain from irregularly spaced data\",\"authors\":\"K. Arakawa, E. Krotkov\",\"doi\":\"10.1109/IROS.1993.583781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors propose a method to estimate terrain roughness directly from the depth information. They estimate the fractal dimension of terrain using the fractal Brownian function approach. For experiments with real data, they extend the approach to accommodate irreguarly sampled elevation data supplied by a scanning laser rangefinder. Applying this extended method to noisy range imagery of natural terrain (sand and rocks), the authors find that the resulting estimates of fractal dimension correlate closely to human perception of the roughness of the terrain, showing that the fractal dimension of the sensed point set is a practical and effective measure of the roughness of natural terrain.\",\"PeriodicalId\":299306,\"journal\":{\"name\":\"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1993.583781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1993.583781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

作者提出了一种直接从深度信息估计地形粗糙度的方法。他们使用分形布朗函数方法估计地形的分形维数。对于实际数据的实验,他们扩展了该方法,以适应由扫描激光测距仪提供的不规则采样高程数据。将该方法应用于自然地形(沙岩)的噪声距离图像,结果表明分形维数的估计与人类对地形粗糙度的感知密切相关,表明感测点集的分形维数是衡量自然地形粗糙度的一种实用有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating fractal dimension of natural terrain from irregularly spaced data
The authors propose a method to estimate terrain roughness directly from the depth information. They estimate the fractal dimension of terrain using the fractal Brownian function approach. For experiments with real data, they extend the approach to accommodate irreguarly sampled elevation data supplied by a scanning laser rangefinder. Applying this extended method to noisy range imagery of natural terrain (sand and rocks), the authors find that the resulting estimates of fractal dimension correlate closely to human perception of the roughness of the terrain, showing that the fractal dimension of the sensed point set is a practical and effective measure of the roughness of natural terrain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信