改进主成分分析的人脸识别

Y. Nara, Jianming Yang, Y. Suematsu
{"title":"改进主成分分析的人脸识别","authors":"Y. Nara, Jianming Yang, Y. Suematsu","doi":"10.1109/MHS.2003.1249913","DOIUrl":null,"url":null,"abstract":"At the general recognition process, the feature vectors that are obtained from some facial images are transformed into recognition space by Fisher's linear discriminate method (Fisher's method) and principal component analysis (PCA). But at Fisher's method we must recalculate all recognition space when adding a registrant or registrant's learning patterns. In contrast, though at PCA we only recalculate added registrant's pace when adding, the face recognition rate obtained from the conventional PCA is bad, because the aim of the conventional PCA is dimension curtailment for compression of data and isn't dimension curtailment for recognition. Therefore we proposed improved principal component analysis (IPCA) for pattern recognition.","PeriodicalId":358698,"journal":{"name":"MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717)","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Face recognition using improved principal component analysis\",\"authors\":\"Y. Nara, Jianming Yang, Y. Suematsu\",\"doi\":\"10.1109/MHS.2003.1249913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At the general recognition process, the feature vectors that are obtained from some facial images are transformed into recognition space by Fisher's linear discriminate method (Fisher's method) and principal component analysis (PCA). But at Fisher's method we must recalculate all recognition space when adding a registrant or registrant's learning patterns. In contrast, though at PCA we only recalculate added registrant's pace when adding, the face recognition rate obtained from the conventional PCA is bad, because the aim of the conventional PCA is dimension curtailment for compression of data and isn't dimension curtailment for recognition. Therefore we proposed improved principal component analysis (IPCA) for pattern recognition.\",\"PeriodicalId\":358698,\"journal\":{\"name\":\"MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717)\",\"volume\":\"201 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MHS.2003.1249913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MHS.2003.1249913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在一般的识别过程中,通过Fisher的线性判别方法(Fisher’s method)和主成分分析(PCA)将从人脸图像中获得的特征向量变换到识别空间中。但是在Fisher的方法中,当添加一个注册者或注册者的学习模式时,我们必须重新计算所有的识别空间。相比之下,传统主成分分析虽然在添加时只重新计算添加的配准者的步长,但由于传统主成分分析的目的是为了压缩数据而进行维数缩减,而不是为了识别而进行维数缩减,因此得到的人脸识别率很低。因此,我们提出了改进的主成分分析(IPCA)用于模式识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face recognition using improved principal component analysis
At the general recognition process, the feature vectors that are obtained from some facial images are transformed into recognition space by Fisher's linear discriminate method (Fisher's method) and principal component analysis (PCA). But at Fisher's method we must recalculate all recognition space when adding a registrant or registrant's learning patterns. In contrast, though at PCA we only recalculate added registrant's pace when adding, the face recognition rate obtained from the conventional PCA is bad, because the aim of the conventional PCA is dimension curtailment for compression of data and isn't dimension curtailment for recognition. Therefore we proposed improved principal component analysis (IPCA) for pattern recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信