光学跟踪计算机引导超声探头对准

Shih-Yu Sun, Matthew W. Gilbertson, B. Anthony
{"title":"光学跟踪计算机引导超声探头对准","authors":"Shih-Yu Sun, Matthew W. Gilbertson, B. Anthony","doi":"10.1109/ISBI.2013.6556402","DOIUrl":null,"url":null,"abstract":"In longitudinal studies and localized therapies, tissue changes are commonly tracked by repeated ultrasound scans at a fixed location marked on the patient body. However, the accuracy of this probe realignment approach is sometimes inadequate, especially when maintaining the insonification angle is essential. This paper describes a system that provides real-time visual guidance for accurate realignment of the ultrasound probe in six degrees of freedom (6 DoF). This system uses a small camera rigidly mounted on the probe to track artificial skin features, from which the current probe pose relative to the target pose is estimated. A virtual pyramid is created in the skin map and shown in the camera frame to intuitively indicate the probe movement required to achieve the target pose. Performance of this system was examined in vivo, and it was shown that this system significantly improves alignment of tissue structures in repeated ultrasound scans.","PeriodicalId":178011,"journal":{"name":"2013 IEEE 10th International Symposium on Biomedical Imaging","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Computer-guided ultrasound probe realignment by optical tracking\",\"authors\":\"Shih-Yu Sun, Matthew W. Gilbertson, B. Anthony\",\"doi\":\"10.1109/ISBI.2013.6556402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In longitudinal studies and localized therapies, tissue changes are commonly tracked by repeated ultrasound scans at a fixed location marked on the patient body. However, the accuracy of this probe realignment approach is sometimes inadequate, especially when maintaining the insonification angle is essential. This paper describes a system that provides real-time visual guidance for accurate realignment of the ultrasound probe in six degrees of freedom (6 DoF). This system uses a small camera rigidly mounted on the probe to track artificial skin features, from which the current probe pose relative to the target pose is estimated. A virtual pyramid is created in the skin map and shown in the camera frame to intuitively indicate the probe movement required to achieve the target pose. Performance of this system was examined in vivo, and it was shown that this system significantly improves alignment of tissue structures in repeated ultrasound scans.\",\"PeriodicalId\":178011,\"journal\":{\"name\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2013.6556402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2013.6556402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在纵向研究和局部治疗中,通常通过在患者身体上标记的固定位置重复超声扫描来跟踪组织变化。然而,这种探针调整方法的准确性有时是不够的,特别是当保持失谐角是必不可少的。本文介绍了一种为超声探头在六自由度(6dof)的精确对准提供实时视觉引导的系统。该系统使用一个固定安装在探针上的小型摄像机来跟踪人造皮肤特征,由此估计探针相对于目标姿态的当前姿态。在皮肤图中创建一个虚拟金字塔,并显示在相机帧中,直观地指示实现目标姿势所需的探针运动。在体内测试了该系统的性能,结果表明,该系统在重复超声扫描中显著改善了组织结构的排列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computer-guided ultrasound probe realignment by optical tracking
In longitudinal studies and localized therapies, tissue changes are commonly tracked by repeated ultrasound scans at a fixed location marked on the patient body. However, the accuracy of this probe realignment approach is sometimes inadequate, especially when maintaining the insonification angle is essential. This paper describes a system that provides real-time visual guidance for accurate realignment of the ultrasound probe in six degrees of freedom (6 DoF). This system uses a small camera rigidly mounted on the probe to track artificial skin features, from which the current probe pose relative to the target pose is estimated. A virtual pyramid is created in the skin map and shown in the camera frame to intuitively indicate the probe movement required to achieve the target pose. Performance of this system was examined in vivo, and it was shown that this system significantly improves alignment of tissue structures in repeated ultrasound scans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信