基于Pearson关联属性评估的入侵检测系统特征选择

Yuna Sugianela, T. Ahmad
{"title":"基于Pearson关联属性评估的入侵检测系统特征选择","authors":"Yuna Sugianela, T. Ahmad","doi":"10.1109/ICoSTA48221.2020.1570613717","DOIUrl":null,"url":null,"abstract":"IDS helps to overcome the network attack by taking appropriate preventive measures. The data mining method has good adaptability to new attack types; however, it consumes much time for high dimensional data. Therefore, the system needs a reduction of that high dimension. In this paper, we use a correlation approach of the attribute to evaluate those high dimensional data. To achieve a better environment, we propose a cut-off value of correlation to select some best features to use in the classification process. The best cut-off value in our experiment is 0.2 in RF classification that reaches 99.36% accuracy. The selection feature can reduce the time consumed in the running system.","PeriodicalId":375166,"journal":{"name":"2020 International Conference on Smart Technology and Applications (ICoSTA)","volume":"339 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Pearson Correlation Attribute Evaluation-based Feature Selection for Intrusion Detection System\",\"authors\":\"Yuna Sugianela, T. Ahmad\",\"doi\":\"10.1109/ICoSTA48221.2020.1570613717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IDS helps to overcome the network attack by taking appropriate preventive measures. The data mining method has good adaptability to new attack types; however, it consumes much time for high dimensional data. Therefore, the system needs a reduction of that high dimension. In this paper, we use a correlation approach of the attribute to evaluate those high dimensional data. To achieve a better environment, we propose a cut-off value of correlation to select some best features to use in the classification process. The best cut-off value in our experiment is 0.2 in RF classification that reaches 99.36% accuracy. The selection feature can reduce the time consumed in the running system.\",\"PeriodicalId\":375166,\"journal\":{\"name\":\"2020 International Conference on Smart Technology and Applications (ICoSTA)\",\"volume\":\"339 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Smart Technology and Applications (ICoSTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICoSTA48221.2020.1570613717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Smart Technology and Applications (ICoSTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoSTA48221.2020.1570613717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

IDS通过采取适当的防范措施来克服网络攻击。该方法对新的攻击类型具有较好的适应性;然而,对于高维数据,它消耗了大量的时间。因此,系统需要对该高维进行降维。在本文中,我们使用属性的关联方法来评估这些高维数据。为了获得更好的环境,我们提出了一个相关性的截止值来选择一些最好的特征用于分类过程。在我们的实验中,射频分类的最佳截断值为0.2,准确率达到99.36%。选择功能可以减少运行系统所消耗的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pearson Correlation Attribute Evaluation-based Feature Selection for Intrusion Detection System
IDS helps to overcome the network attack by taking appropriate preventive measures. The data mining method has good adaptability to new attack types; however, it consumes much time for high dimensional data. Therefore, the system needs a reduction of that high dimension. In this paper, we use a correlation approach of the attribute to evaluate those high dimensional data. To achieve a better environment, we propose a cut-off value of correlation to select some best features to use in the classification process. The best cut-off value in our experiment is 0.2 in RF classification that reaches 99.36% accuracy. The selection feature can reduce the time consumed in the running system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信