{"title":"基于机器学习的数据和信号分析方法在故障分析中的应用(2022年更新)","authors":"M. Kögel, S. Brand, F. Altmann","doi":"10.31399/asm.cp.istfa2022tps1","DOIUrl":null,"url":null,"abstract":"\n This presentation is an introduction to machine learning techniques and their application in semiconductor failure analysis. The presentation compares and contrasts supervised, unsupervised, and reinforcement learning methods, particularly for neural networks, and lays out the steps of a typical machine learning workflow, including the assessment of data quality. It also presents case studies in which machine learning is used to detect and classify circuit board defects and analyze scanning acoustic microscopy (SAM) data for blind source separation.","PeriodicalId":417175,"journal":{"name":"International Symposium for Testing and Failure Analysis","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Based Data and Signal Analysis Methods for Application in Failure Analysis (2022 Update)\",\"authors\":\"M. Kögel, S. Brand, F. Altmann\",\"doi\":\"10.31399/asm.cp.istfa2022tps1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This presentation is an introduction to machine learning techniques and their application in semiconductor failure analysis. The presentation compares and contrasts supervised, unsupervised, and reinforcement learning methods, particularly for neural networks, and lays out the steps of a typical machine learning workflow, including the assessment of data quality. It also presents case studies in which machine learning is used to detect and classify circuit board defects and analyze scanning acoustic microscopy (SAM) data for blind source separation.\",\"PeriodicalId\":417175,\"journal\":{\"name\":\"International Symposium for Testing and Failure Analysis\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium for Testing and Failure Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.cp.istfa2022tps1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium for Testing and Failure Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2022tps1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning Based Data and Signal Analysis Methods for Application in Failure Analysis (2022 Update)
This presentation is an introduction to machine learning techniques and their application in semiconductor failure analysis. The presentation compares and contrasts supervised, unsupervised, and reinforcement learning methods, particularly for neural networks, and lays out the steps of a typical machine learning workflow, including the assessment of data quality. It also presents case studies in which machine learning is used to detect and classify circuit board defects and analyze scanning acoustic microscopy (SAM) data for blind source separation.