基于人工神经网络估计的DFIG风力机最大功率控制评价

Chun Wei, Liyan Qu, W. Qiao
{"title":"基于人工神经网络估计的DFIG风力机最大功率控制评价","authors":"Chun Wei, Liyan Qu, W. Qiao","doi":"10.1109/PEMWA.2014.6912224","DOIUrl":null,"url":null,"abstract":"This paper proposes an artificial neuronal network (ANN) estimation-based wind speed sensolress MPPT algorithm for wind turbines equipped with doubly-fed induction generators (DFIG). The ANN is designed to produce the optimal control signal for the DFIG power or speed controller. The optimal parameters of the ANN are determined by using a particle swarm optimization (PSO) algorithm. A 3.6 MW DFIG wind turbine is simulated in PSCAD to evaluate and compare the proposed MPPT method with the traditional tip speed ratio (TSR) and turbine power profile-based MPPT methods in both the speed control and power control modes in variable wind speed conditions.","PeriodicalId":370712,"journal":{"name":"2014 IEEE Symposium on Power Electronics and Machines for Wind and Water Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Evaluation of ANN estimation-based MPPT control for a DFIG wind turbine\",\"authors\":\"Chun Wei, Liyan Qu, W. Qiao\",\"doi\":\"10.1109/PEMWA.2014.6912224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an artificial neuronal network (ANN) estimation-based wind speed sensolress MPPT algorithm for wind turbines equipped with doubly-fed induction generators (DFIG). The ANN is designed to produce the optimal control signal for the DFIG power or speed controller. The optimal parameters of the ANN are determined by using a particle swarm optimization (PSO) algorithm. A 3.6 MW DFIG wind turbine is simulated in PSCAD to evaluate and compare the proposed MPPT method with the traditional tip speed ratio (TSR) and turbine power profile-based MPPT methods in both the speed control and power control modes in variable wind speed conditions.\",\"PeriodicalId\":370712,\"journal\":{\"name\":\"2014 IEEE Symposium on Power Electronics and Machines for Wind and Water Applications\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Power Electronics and Machines for Wind and Water Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEMWA.2014.6912224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Power Electronics and Machines for Wind and Water Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEMWA.2014.6912224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

针对双馈感应发电机(DFIG)风力发电机组,提出了一种基于人工神经网络(ANN)估计的风速传感器MPPT算法。人工神经网络的设计目的是为DFIG功率或速度控制器产生最优控制信号。采用粒子群优化算法确定神经网络的最优参数。在PSCAD中对一台3.6 MW DFIG风力机进行了仿真,在变风速条件下,将所提出的MPPT方法与传统的叶尖速度比(TSR)和基于涡轮功率廓线的MPPT方法在速度控制和功率控制两种模式下进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of ANN estimation-based MPPT control for a DFIG wind turbine
This paper proposes an artificial neuronal network (ANN) estimation-based wind speed sensolress MPPT algorithm for wind turbines equipped with doubly-fed induction generators (DFIG). The ANN is designed to produce the optimal control signal for the DFIG power or speed controller. The optimal parameters of the ANN are determined by using a particle swarm optimization (PSO) algorithm. A 3.6 MW DFIG wind turbine is simulated in PSCAD to evaluate and compare the proposed MPPT method with the traditional tip speed ratio (TSR) and turbine power profile-based MPPT methods in both the speed control and power control modes in variable wind speed conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信