中国西南地区玉米地方品种种质资源评价。

F. B. Chen, Q. Yao, H. F. Liu, P. Fang
{"title":"中国西南地区玉米地方品种种质资源评价。","authors":"F. B. Chen, Q. Yao, H. F. Liu, P. Fang","doi":"10.4238/gmr15049160","DOIUrl":null,"url":null,"abstract":"Because of their local adaptation and economic factors that limit the adoption of commercial hybrids, farmer-saved maize landraces are still grown over a considerable area concentrated in southwest China. To evaluate the potential of using maize landraces, the germplasm characteristics of 96 landraces from southwest China were evaluated at phenotypic, cellular, and molecular levels. The existence of high phenotypic variation and elite germplasm tolerant to low-N, low-P, as well as drought stress was observed. Of the total landraces, 81.25, 7.29, 5.21, and 2.08% were found with 0, 1, 2, 3, and 4 B chromosomes. Using 42 microsatellite (simple sequence repeat) loci, 246 alleles were detected among the landraces. The number of alleles per SSR locus varied from 2 to 10, averaging 5.67 allele per locus, which revealed a high level of genetic diversity of maize landraces in southwest China. Cluster analysis showed that 96 landraces could distinctly be clustered into four groups, which tended to associate with their geographic origins. We propose that the genetic diversity center of maize landraces in southwest China might be in Sichuan. A sharp genetic deviation from Hardy-Weinberg equilibrium was observed from heterozygosity deficiency and a considerable genetic variation was revealed within, rather than among, the landraces. Based on their germplasm characteristics, the innovation and utilization of maize landraces in southwestern China for theoretical and applied research could be achieved by constructing heterosis groups, developing inbred lines with high combining ability, and maintaining the landraces with elite germplasm and B chromosomes using bulked pollen.","PeriodicalId":189314,"journal":{"name":"Genetics and molecular research : GMR","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evaluation on the germplasm of maize (Zea mays L.) landraces from southwest China.\",\"authors\":\"F. B. Chen, Q. Yao, H. F. Liu, P. Fang\",\"doi\":\"10.4238/gmr15049160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of their local adaptation and economic factors that limit the adoption of commercial hybrids, farmer-saved maize landraces are still grown over a considerable area concentrated in southwest China. To evaluate the potential of using maize landraces, the germplasm characteristics of 96 landraces from southwest China were evaluated at phenotypic, cellular, and molecular levels. The existence of high phenotypic variation and elite germplasm tolerant to low-N, low-P, as well as drought stress was observed. Of the total landraces, 81.25, 7.29, 5.21, and 2.08% were found with 0, 1, 2, 3, and 4 B chromosomes. Using 42 microsatellite (simple sequence repeat) loci, 246 alleles were detected among the landraces. The number of alleles per SSR locus varied from 2 to 10, averaging 5.67 allele per locus, which revealed a high level of genetic diversity of maize landraces in southwest China. Cluster analysis showed that 96 landraces could distinctly be clustered into four groups, which tended to associate with their geographic origins. We propose that the genetic diversity center of maize landraces in southwest China might be in Sichuan. A sharp genetic deviation from Hardy-Weinberg equilibrium was observed from heterozygosity deficiency and a considerable genetic variation was revealed within, rather than among, the landraces. Based on their germplasm characteristics, the innovation and utilization of maize landraces in southwestern China for theoretical and applied research could be achieved by constructing heterosis groups, developing inbred lines with high combining ability, and maintaining the landraces with elite germplasm and B chromosomes using bulked pollen.\",\"PeriodicalId\":189314,\"journal\":{\"name\":\"Genetics and molecular research : GMR\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics and molecular research : GMR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4238/gmr15049160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics and molecular research : GMR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4238/gmr15049160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于地方适应性和经济因素限制了商业杂交品种的采用,农民保存的地方玉米品种仍然在中国西南部的相当大的地区种植。为评价玉米地方品种的利用潜力,从表型、细胞和分子水平对中国西南地区96个玉米地方品种的种质特征进行了评价。高表型变异和耐低氮、低磷和干旱胁迫的优良种质存在。0、1、2、3、4条B染色体的比例分别为81.25、7.29、5.21、2.08%。利用42个微卫星(简单序列重复)位点,检测到246个等位基因。每个SSR位点的等位基因数在2 ~ 10个之间,平均为5.67个,表明西南玉米地方品种具有较高的遗传多样性。聚类分析表明,96个地方品种可以明显地聚为4个类群,这些类群倾向于与它们的地理来源相关联。我们认为,中国西南玉米地方品种的遗传多样性中心可能在四川。由于杂合性不足,观察到对Hardy-Weinberg平衡的严重遗传偏差,并且在地方小种内部而不是在地方小种之间显示出相当大的遗传变异。根据西南玉米地方品种的种质特性,可以通过构建杂种优势群体、选育高配合力的自交系、利用散粒花粉维持具有优良种质和B染色体的地方品种等途径,实现对西南玉米地方品种的创新利用,进行理论和应用研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation on the germplasm of maize (Zea mays L.) landraces from southwest China.
Because of their local adaptation and economic factors that limit the adoption of commercial hybrids, farmer-saved maize landraces are still grown over a considerable area concentrated in southwest China. To evaluate the potential of using maize landraces, the germplasm characteristics of 96 landraces from southwest China were evaluated at phenotypic, cellular, and molecular levels. The existence of high phenotypic variation and elite germplasm tolerant to low-N, low-P, as well as drought stress was observed. Of the total landraces, 81.25, 7.29, 5.21, and 2.08% were found with 0, 1, 2, 3, and 4 B chromosomes. Using 42 microsatellite (simple sequence repeat) loci, 246 alleles were detected among the landraces. The number of alleles per SSR locus varied from 2 to 10, averaging 5.67 allele per locus, which revealed a high level of genetic diversity of maize landraces in southwest China. Cluster analysis showed that 96 landraces could distinctly be clustered into four groups, which tended to associate with their geographic origins. We propose that the genetic diversity center of maize landraces in southwest China might be in Sichuan. A sharp genetic deviation from Hardy-Weinberg equilibrium was observed from heterozygosity deficiency and a considerable genetic variation was revealed within, rather than among, the landraces. Based on their germplasm characteristics, the innovation and utilization of maize landraces in southwestern China for theoretical and applied research could be achieved by constructing heterosis groups, developing inbred lines with high combining ability, and maintaining the landraces with elite germplasm and B chromosomes using bulked pollen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信