一种用于计算纹理特征的EZW压缩图像技术

B. Wilson, M. Bayoumi
{"title":"一种用于计算纹理特征的EZW压缩图像技术","authors":"B. Wilson, M. Bayoumi","doi":"10.1109/MWSCAS.2000.952828","DOIUrl":null,"url":null,"abstract":"Traditional techniques for texture feature extraction needlessly consume valuable system resources by decompressing and storing the image data prior to processing. This paper presents a new technique for calculating mean deviation texture signatures directly from wavelet-compressed images. The technique reduces the overhead while maintaining accuracy. It offers a reduction in memory and computational costs by reducing and simplifying the calculations performed and by eliminating the storage of the reconstructed image.","PeriodicalId":437349,"journal":{"name":"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An EZW compressed image technique for calculating texture signatures\",\"authors\":\"B. Wilson, M. Bayoumi\",\"doi\":\"10.1109/MWSCAS.2000.952828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional techniques for texture feature extraction needlessly consume valuable system resources by decompressing and storing the image data prior to processing. This paper presents a new technique for calculating mean deviation texture signatures directly from wavelet-compressed images. The technique reduces the overhead while maintaining accuracy. It offers a reduction in memory and computational costs by reducing and simplifying the calculations performed and by eliminating the storage of the reconstructed image.\",\"PeriodicalId\":437349,\"journal\":{\"name\":\"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)\",\"volume\":\"256 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2000.952828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2000.952828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的纹理特征提取技术需要在处理前对图像数据进行解压和存储,从而不必要地消耗宝贵的系统资源。提出了一种直接从小波压缩图像中计算纹理特征均值偏差的新方法。该技术在保持准确性的同时减少了开销。它通过减少和简化所执行的计算以及通过消除重建图像的存储来减少内存和计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An EZW compressed image technique for calculating texture signatures
Traditional techniques for texture feature extraction needlessly consume valuable system resources by decompressing and storing the image data prior to processing. This paper presents a new technique for calculating mean deviation texture signatures directly from wavelet-compressed images. The technique reduces the overhead while maintaining accuracy. It offers a reduction in memory and computational costs by reducing and simplifying the calculations performed and by eliminating the storage of the reconstructed image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信