(重尾)风险的稳健度量:理论与实现

Judith C. Schneider, Nikolaus Schweizer
{"title":"(重尾)风险的稳健度量:理论与实现","authors":"Judith C. Schneider, Nikolaus Schweizer","doi":"10.2139/ssrn.2339724","DOIUrl":null,"url":null,"abstract":"Every model presents an approximation of reality and thus modeling inevitably implies model risk. We quantify model risk in a non-parametric way, i.e., in terms of the divergence from a so-called nominal model. Worst-case risk is defined as the maximal risk among all models within a given divergence ball. We derive several new results on how different divergence measures affect the worst case. Moreover, we present a novel, empirical way built on model confidence sets (MCS) for choosing the radius of the divergence ball around the nominal model, i.e., for calibrating the amount of model risk. We demonstrate the implications of heavy-tailed risks for the choice of the divergence measure and the empirical divergence estimation. For heavy-tailed risks, the simulation of the worst-case distribution is numerically intricate. We present a Sequential Monte Carlo algorithm which is suitable for this task. An extended practical example, assessing the robustness of a hedging strategy, illustrates our approach.","PeriodicalId":202880,"journal":{"name":"Research Methods & Methodology in Accounting eJournal","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Robust Measurement of (Heavy-Tailed) Risks: Theory and Implementation\",\"authors\":\"Judith C. Schneider, Nikolaus Schweizer\",\"doi\":\"10.2139/ssrn.2339724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Every model presents an approximation of reality and thus modeling inevitably implies model risk. We quantify model risk in a non-parametric way, i.e., in terms of the divergence from a so-called nominal model. Worst-case risk is defined as the maximal risk among all models within a given divergence ball. We derive several new results on how different divergence measures affect the worst case. Moreover, we present a novel, empirical way built on model confidence sets (MCS) for choosing the radius of the divergence ball around the nominal model, i.e., for calibrating the amount of model risk. We demonstrate the implications of heavy-tailed risks for the choice of the divergence measure and the empirical divergence estimation. For heavy-tailed risks, the simulation of the worst-case distribution is numerically intricate. We present a Sequential Monte Carlo algorithm which is suitable for this task. An extended practical example, assessing the robustness of a hedging strategy, illustrates our approach.\",\"PeriodicalId\":202880,\"journal\":{\"name\":\"Research Methods & Methodology in Accounting eJournal\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Methods & Methodology in Accounting eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2339724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Methods & Methodology in Accounting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2339724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

每个模型都是现实的近似值,因此建模不可避免地意味着模型风险。我们以非参数方式量化模型风险,即根据所谓的名义模型的分歧。最坏情况风险定义为给定散度球内所有模型的最大风险。我们得出了几个关于不同的散度度量如何影响最坏情况的新结果。此外,我们提出了一种基于模型置信集(MCS)的新颖经验方法,用于选择标称模型周围发散球的半径,即用于校准模型风险的数量。我们论证了重尾风险对散度度量和经验散度估计的选择的影响。对于重尾风险,最坏情况分布的模拟在数值上是复杂的。我们提出了一种适合于此任务的顺序蒙特卡罗算法。一个扩展的实际例子,评估对冲策略的稳健性,说明了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Measurement of (Heavy-Tailed) Risks: Theory and Implementation
Every model presents an approximation of reality and thus modeling inevitably implies model risk. We quantify model risk in a non-parametric way, i.e., in terms of the divergence from a so-called nominal model. Worst-case risk is defined as the maximal risk among all models within a given divergence ball. We derive several new results on how different divergence measures affect the worst case. Moreover, we present a novel, empirical way built on model confidence sets (MCS) for choosing the radius of the divergence ball around the nominal model, i.e., for calibrating the amount of model risk. We demonstrate the implications of heavy-tailed risks for the choice of the divergence measure and the empirical divergence estimation. For heavy-tailed risks, the simulation of the worst-case distribution is numerically intricate. We present a Sequential Monte Carlo algorithm which is suitable for this task. An extended practical example, assessing the robustness of a hedging strategy, illustrates our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信