基于改进ID3算法的学习模型研究

Ding Rongtao, Ji Xinhao, Zhu Linting, Ren Wei
{"title":"基于改进ID3算法的学习模型研究","authors":"Ding Rongtao, Ji Xinhao, Zhu Linting, Ren Wei","doi":"10.1109/WKDD.2008.68","DOIUrl":null,"url":null,"abstract":"The network learning behavior intelligence analysis system can collect the information of learner's psychology, behavior, methods and effectiveness in the learning process, and classify learners by using the ID3 algorithm based on the internal factors and personality characteristics of learners that influence the learning effect. In order to correct the shortcomings that the ID3 algorithm more inclined to the attributes that have more values in the classification process, we introduce user interest, which used to distinguish the dependence between different information attributes. At the same time, we introduce parameters to reduce the redundancy between attributes, and accelerate the pace of information entropy reducing, then construct a general, expandable senior vocational student model in the intelligence-learning environment.","PeriodicalId":101656,"journal":{"name":"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)","volume":"255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Study of the Learning Model Based on Improved ID3 Algorithm\",\"authors\":\"Ding Rongtao, Ji Xinhao, Zhu Linting, Ren Wei\",\"doi\":\"10.1109/WKDD.2008.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The network learning behavior intelligence analysis system can collect the information of learner's psychology, behavior, methods and effectiveness in the learning process, and classify learners by using the ID3 algorithm based on the internal factors and personality characteristics of learners that influence the learning effect. In order to correct the shortcomings that the ID3 algorithm more inclined to the attributes that have more values in the classification process, we introduce user interest, which used to distinguish the dependence between different information attributes. At the same time, we introduce parameters to reduce the redundancy between attributes, and accelerate the pace of information entropy reducing, then construct a general, expandable senior vocational student model in the intelligence-learning environment.\",\"PeriodicalId\":101656,\"journal\":{\"name\":\"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)\",\"volume\":\"255 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WKDD.2008.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2008.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

网络学习行为智能分析系统可以收集学习者在学习过程中的心理、行为、方法和有效性等信息,并根据学习者影响学习效果的内在因素和个性特征,采用ID3算法对学习者进行分类。为了纠正ID3算法在分类过程中更倾向于选择具有更多值的属性的缺点,我们引入了用户兴趣,用于区分不同信息属性之间的依赖关系。同时,通过引入参数来减少属性间的冗余,加快信息熵的约简速度,构建了智能学习环境下通用的、可扩展的高职生模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of the Learning Model Based on Improved ID3 Algorithm
The network learning behavior intelligence analysis system can collect the information of learner's psychology, behavior, methods and effectiveness in the learning process, and classify learners by using the ID3 algorithm based on the internal factors and personality characteristics of learners that influence the learning effect. In order to correct the shortcomings that the ID3 algorithm more inclined to the attributes that have more values in the classification process, we introduce user interest, which used to distinguish the dependence between different information attributes. At the same time, we introduce parameters to reduce the redundancy between attributes, and accelerate the pace of information entropy reducing, then construct a general, expandable senior vocational student model in the intelligence-learning environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信