基于线性回归的数据驱动模型泛锐化

Mutum Bidyarani Devi, R. Devanathan
{"title":"基于线性回归的数据驱动模型泛锐化","authors":"Mutum Bidyarani Devi, R. Devanathan","doi":"10.1109/CONECCT.2018.8482388","DOIUrl":null,"url":null,"abstract":"With the launching of many earth’s observation satellites, the amount of data capturing the Earth’s surface has been increasing to a great extent. In this paper, we emphasize the need for analyzing the satellite image data particularly in the context of data fusion applied to data taken from sensors of different resolution. The problem lies in maintaining the spectral characteristics of the multispectral images when panchromatic image is used to estimate the high spatial multispectral image. We take a wholesome approach based on the reflectance data irrespective of the sensor physics. The approach aims to produce an enhanced spatial resolution multispectral image having the same resolution as that of the panchromatic data while still preserving the spectral characteristics of the multispectral image. Using a linear regression model between multispectral and panchromatic data, an optimal solution in terms of Lagrange multiplier is provided and validated to maximize the spectral consistency of the fused image. The chi-square test is used to check the “goodness of fitd” of the data. The experimental results are discussed and presented using IKONOS satellite data.","PeriodicalId":430389,"journal":{"name":"2018 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pansharpening Using Data Driven Model Based on Linear Regression\",\"authors\":\"Mutum Bidyarani Devi, R. Devanathan\",\"doi\":\"10.1109/CONECCT.2018.8482388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the launching of many earth’s observation satellites, the amount of data capturing the Earth’s surface has been increasing to a great extent. In this paper, we emphasize the need for analyzing the satellite image data particularly in the context of data fusion applied to data taken from sensors of different resolution. The problem lies in maintaining the spectral characteristics of the multispectral images when panchromatic image is used to estimate the high spatial multispectral image. We take a wholesome approach based on the reflectance data irrespective of the sensor physics. The approach aims to produce an enhanced spatial resolution multispectral image having the same resolution as that of the panchromatic data while still preserving the spectral characteristics of the multispectral image. Using a linear regression model between multispectral and panchromatic data, an optimal solution in terms of Lagrange multiplier is provided and validated to maximize the spectral consistency of the fused image. The chi-square test is used to check the “goodness of fitd” of the data. The experimental results are discussed and presented using IKONOS satellite data.\",\"PeriodicalId\":430389,\"journal\":{\"name\":\"2018 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONECCT.2018.8482388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONECCT.2018.8482388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着许多地球观测卫星的发射,捕获地球表面的数据量在很大程度上增加了。在本文中,我们强调了分析卫星图像数据的必要性,特别是在数据融合应用于不同分辨率的传感器数据的背景下。在利用全色图像估计高空间多光谱图像时,问题在于如何保持多光谱图像的光谱特征。我们采用基于反射数据的健康方法,而不考虑传感器的物理特性。该方法旨在生成与全色数据具有相同分辨率的增强空间分辨率多光谱图像,同时仍保留多光谱图像的光谱特征。利用多光谱和全色数据之间的线性回归模型,给出了基于拉格朗日乘子的最优解,并进行了验证,使融合图像的光谱一致性最大化。卡方检验用于检验数据的“拟合优度”。利用IKONOS卫星数据对实验结果进行了讨论和介绍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pansharpening Using Data Driven Model Based on Linear Regression
With the launching of many earth’s observation satellites, the amount of data capturing the Earth’s surface has been increasing to a great extent. In this paper, we emphasize the need for analyzing the satellite image data particularly in the context of data fusion applied to data taken from sensors of different resolution. The problem lies in maintaining the spectral characteristics of the multispectral images when panchromatic image is used to estimate the high spatial multispectral image. We take a wholesome approach based on the reflectance data irrespective of the sensor physics. The approach aims to produce an enhanced spatial resolution multispectral image having the same resolution as that of the panchromatic data while still preserving the spectral characteristics of the multispectral image. Using a linear regression model between multispectral and panchromatic data, an optimal solution in terms of Lagrange multiplier is provided and validated to maximize the spectral consistency of the fused image. The chi-square test is used to check the “goodness of fitd” of the data. The experimental results are discussed and presented using IKONOS satellite data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信