介电弹性体致动器与盲文显示中的光学字符识别

I. Botha, G. Bright, J. Collins
{"title":"介电弹性体致动器与盲文显示中的光学字符识别","authors":"I. Botha, G. Bright, J. Collins","doi":"10.17159/2309-8988/2022/v38a4","DOIUrl":null,"url":null,"abstract":"The purpose of this study was the development and experimental validation of a novel portable tactile braille reading device. This design aimed to address the lack of quality braille reading material in South African schools dedicated to the blind and visually impaired. The design was divided into four subsystems: the actuation of the refreshable braille display, the mechanical design of the hand mounted device, the Optical Character Recognition (OCR) software and the electronic control system. The objectives of the study included the design of the electrical, mechanical and software subsystems of the device with emphasis on miniaturisation and a low-cost design, as well as the experimental validation of the haptic feedback and OCR subsystems. The system validation focussed on the experimental analysis of the OCR software design and the Dielectric Elastomer Actuators (DEAs) utilised in the refreshable display. The performance of low-cost elastomer and electrode materials were experimentally assessed during the design of the miniature DEAs. The ideal material combination for the proposed application was identified as a VHB4910 acrylic film lined with MG Chemicals 846 carbon grease. The largest vertical deflections of the diaphragm-type DEA were attained with a stipple-based electrode application, with the elastomer prestrained to 300 % initial area. The OCR program analysis indicated that multiple character recognition was more efficient and less prone to inaccuracies than the initially proposed single character recognition method. The integration of OCR software with miniature DEAs served as a novel approach to text-to-braille transcription.","PeriodicalId":331389,"journal":{"name":"R&D Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dielectric Elastomer Actuators and Optical Character Recognition in a Braille Display\",\"authors\":\"I. Botha, G. Bright, J. Collins\",\"doi\":\"10.17159/2309-8988/2022/v38a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study was the development and experimental validation of a novel portable tactile braille reading device. This design aimed to address the lack of quality braille reading material in South African schools dedicated to the blind and visually impaired. The design was divided into four subsystems: the actuation of the refreshable braille display, the mechanical design of the hand mounted device, the Optical Character Recognition (OCR) software and the electronic control system. The objectives of the study included the design of the electrical, mechanical and software subsystems of the device with emphasis on miniaturisation and a low-cost design, as well as the experimental validation of the haptic feedback and OCR subsystems. The system validation focussed on the experimental analysis of the OCR software design and the Dielectric Elastomer Actuators (DEAs) utilised in the refreshable display. The performance of low-cost elastomer and electrode materials were experimentally assessed during the design of the miniature DEAs. The ideal material combination for the proposed application was identified as a VHB4910 acrylic film lined with MG Chemicals 846 carbon grease. The largest vertical deflections of the diaphragm-type DEA were attained with a stipple-based electrode application, with the elastomer prestrained to 300 % initial area. The OCR program analysis indicated that multiple character recognition was more efficient and less prone to inaccuracies than the initially proposed single character recognition method. The integration of OCR software with miniature DEAs served as a novel approach to text-to-braille transcription.\",\"PeriodicalId\":331389,\"journal\":{\"name\":\"R&D Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R&D Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17159/2309-8988/2022/v38a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R&D Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17159/2309-8988/2022/v38a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是开发一种新型便携式触觉盲文阅读装置并进行实验验证。该设计旨在解决南非盲人和视障儿童学校盲文阅读材料质量不足的问题。设计分为四个子系统:可刷新盲文显示器的驱动、手持装置的机械设计、光学字符识别(OCR)软件和电子控制系统。该研究的目标包括该设备的电气、机械和软件子系统的设计,重点是小型化和低成本设计,以及触觉反馈和OCR子系统的实验验证。系统验证的重点是OCR软件设计和可刷新显示中使用的介电弹性体致动器(dea)的实验分析。在微型dea的设计过程中,对低成本弹性体和电极材料的性能进行了实验评估。理想的材料组合被确定为VHB4910丙烯酸薄膜内衬MG Chemicals 846碳脂。膜片型DEA的最大垂直挠度是通过点状电极应用获得的,弹性体预应力为初始面积的300%。OCR程序分析表明,与最初提出的单字符识别方法相比,多字符识别效率更高,更不容易出错。OCR软件与微型dea的集成为文本到盲文转录提供了一种新颖的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dielectric Elastomer Actuators and Optical Character Recognition in a Braille Display
The purpose of this study was the development and experimental validation of a novel portable tactile braille reading device. This design aimed to address the lack of quality braille reading material in South African schools dedicated to the blind and visually impaired. The design was divided into four subsystems: the actuation of the refreshable braille display, the mechanical design of the hand mounted device, the Optical Character Recognition (OCR) software and the electronic control system. The objectives of the study included the design of the electrical, mechanical and software subsystems of the device with emphasis on miniaturisation and a low-cost design, as well as the experimental validation of the haptic feedback and OCR subsystems. The system validation focussed on the experimental analysis of the OCR software design and the Dielectric Elastomer Actuators (DEAs) utilised in the refreshable display. The performance of low-cost elastomer and electrode materials were experimentally assessed during the design of the miniature DEAs. The ideal material combination for the proposed application was identified as a VHB4910 acrylic film lined with MG Chemicals 846 carbon grease. The largest vertical deflections of the diaphragm-type DEA were attained with a stipple-based electrode application, with the elastomer prestrained to 300 % initial area. The OCR program analysis indicated that multiple character recognition was more efficient and less prone to inaccuracies than the initially proposed single character recognition method. The integration of OCR software with miniature DEAs served as a novel approach to text-to-braille transcription.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信