F[x, y]的Gröbner理想基的快速计算

Yindong Chen, Yao Lu, Peizhong Lu
{"title":"F[x, y]的Gröbner理想基的快速计算","authors":"Yindong Chen, Yao Lu, Peizhong Lu","doi":"10.1109/ISIT.2009.5205791","DOIUrl":null,"url":null,"abstract":"This paper provides a fast algorithm for Gröbner bases of ideals of F[x, y] over a field F. We show that only the S-polynomials of neighbor pairs of a strictly ordered finite generating set are needed in the computing of a Gröbner bases of the ideal. It reduces dramatically the number of unnecessary S-polynomials that are processed. Although the complexity of the algorithm is hard to evaluated, it obviously has a great improvement from Buchberger's Algorithm.","PeriodicalId":412925,"journal":{"name":"2009 IEEE International Symposium on Information Theory","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast computation of Gröbner bases of ideals of F[x, y]\",\"authors\":\"Yindong Chen, Yao Lu, Peizhong Lu\",\"doi\":\"10.1109/ISIT.2009.5205791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a fast algorithm for Gröbner bases of ideals of F[x, y] over a field F. We show that only the S-polynomials of neighbor pairs of a strictly ordered finite generating set are needed in the computing of a Gröbner bases of the ideal. It reduces dramatically the number of unnecessary S-polynomials that are processed. Although the complexity of the algorithm is hard to evaluated, it obviously has a great improvement from Buchberger's Algorithm.\",\"PeriodicalId\":412925,\"journal\":{\"name\":\"2009 IEEE International Symposium on Information Theory\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2009.5205791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2009.5205791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了域F上F[x, y]的Gröbner理想基的一种快速算法,证明了在计算理想的Gröbner基时,只需要严格有序有限生成集的近邻对的s多项式。它极大地减少了处理的不必要的s多项式的数量。虽然该算法的复杂度很难评估,但显然比Buchberger算法有了很大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast computation of Gröbner bases of ideals of F[x, y]
This paper provides a fast algorithm for Gröbner bases of ideals of F[x, y] over a field F. We show that only the S-polynomials of neighbor pairs of a strictly ordered finite generating set are needed in the computing of a Gröbner bases of the ideal. It reduces dramatically the number of unnecessary S-polynomials that are processed. Although the complexity of the algorithm is hard to evaluated, it obviously has a great improvement from Buchberger's Algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信