{"title":"打开神经形态计算中硅芯片设计的“黑匣子”","authors":"Kangjun Bai, Y. Yi","doi":"10.5772/INTECHOPEN.83832","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing, a bio-inspired computing architecture that transfers neuroscience to silicon chip, has potential to achieve the same level of computation and energy efficiency as mammalian brains. Meanwhile, threedimensional (3D) integrated circuit (IC) design with non-volatile memory crossbar array uniquely unveils its intrinsic vector-matrix computation with parallel computing capability in neuromorphic computing designs. In this chapter, the state-of-the-art research trend on electronic circuit designs of neuromorphic computing will be introduced. Furthermore, a practical bio-inspired spiking neural network with delay-feedback topology will be discussed. In the endeavor to imitate how human beings process information, our fabricated spiking neural network chip has capability to process analog signal directly, resulting in high energy efficiency with small hardware implementation cost. Mimicking the neurological structure of mammalian brains, the potential of 3D-IC implementation technique with memristive synapses is investigated. Finally, applications on the chaotic time series prediction and the video frame recognition will be demonstrated.","PeriodicalId":102276,"journal":{"name":"Bio-Inspired Technology [Working Title]","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Opening the “Black Box” of Silicon Chip Design in Neuromorphic Computing\",\"authors\":\"Kangjun Bai, Y. Yi\",\"doi\":\"10.5772/INTECHOPEN.83832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuromorphic computing, a bio-inspired computing architecture that transfers neuroscience to silicon chip, has potential to achieve the same level of computation and energy efficiency as mammalian brains. Meanwhile, threedimensional (3D) integrated circuit (IC) design with non-volatile memory crossbar array uniquely unveils its intrinsic vector-matrix computation with parallel computing capability in neuromorphic computing designs. In this chapter, the state-of-the-art research trend on electronic circuit designs of neuromorphic computing will be introduced. Furthermore, a practical bio-inspired spiking neural network with delay-feedback topology will be discussed. In the endeavor to imitate how human beings process information, our fabricated spiking neural network chip has capability to process analog signal directly, resulting in high energy efficiency with small hardware implementation cost. Mimicking the neurological structure of mammalian brains, the potential of 3D-IC implementation technique with memristive synapses is investigated. Finally, applications on the chaotic time series prediction and the video frame recognition will be demonstrated.\",\"PeriodicalId\":102276,\"journal\":{\"name\":\"Bio-Inspired Technology [Working Title]\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-Inspired Technology [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.83832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-Inspired Technology [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.83832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Opening the “Black Box” of Silicon Chip Design in Neuromorphic Computing
Neuromorphic computing, a bio-inspired computing architecture that transfers neuroscience to silicon chip, has potential to achieve the same level of computation and energy efficiency as mammalian brains. Meanwhile, threedimensional (3D) integrated circuit (IC) design with non-volatile memory crossbar array uniquely unveils its intrinsic vector-matrix computation with parallel computing capability in neuromorphic computing designs. In this chapter, the state-of-the-art research trend on electronic circuit designs of neuromorphic computing will be introduced. Furthermore, a practical bio-inspired spiking neural network with delay-feedback topology will be discussed. In the endeavor to imitate how human beings process information, our fabricated spiking neural network chip has capability to process analog signal directly, resulting in high energy efficiency with small hardware implementation cost. Mimicking the neurological structure of mammalian brains, the potential of 3D-IC implementation technique with memristive synapses is investigated. Finally, applications on the chaotic time series prediction and the video frame recognition will be demonstrated.