用LRT-OCT系统体外测量晶状体的球差(会议报告)

Siobhan Williams, M. Ruggeri, Bianca Maceo Heilman, Yu-Cherng Chang, Ashik Mohamed, G. Sravani, C. Rowaan, Alex Gonzalez, A. Ho, J. Parel, F. Manns
{"title":"用LRT-OCT系统体外测量晶状体的球差(会议报告)","authors":"Siobhan Williams, M. Ruggeri, Bianca Maceo Heilman, Yu-Cherng Chang, Ashik Mohamed, G. Sravani, C. Rowaan, Alex Gonzalez, A. Ho, J. Parel, F. Manns","doi":"10.1117/12.2508664","DOIUrl":null,"url":null,"abstract":"Anatomical changes of the growing crystalline lens influence its refractive development, including power and spherical aberration. We have recently developed a new instrument that characterizes both the optical and biometric properties of the lens in-vitro by merging Ray-Tracing Aberrometry (RTA) with three-dimensional OCT imaging. In this abstract, we describe the application of the RTA to the measurement of lens spherical aberration.\n\nExperiments were performed on 54 isolated human lenses (age: 0.25 to 56 years). The system was programmed to sequentially deliver the probing beam through the lens using a raster scan pattern of 13 × 13 transversal positions spaced 0.5 mm apart. Exit rays were imaged after exiting the tissue chamber at 9 different axial positions (ΔZ = 0 mm to 8 mm) in 1 mm intervals. A total of 1,521 spot images were acquired per lens. All data was automatically analyzed using custom software we developed in MATLAB. Exit ray slopes over a 6 mm pupil were used to determine Zernike wavefront coefficients up to the sixth order. The 4th order Zernike coefficient Z[4,0] was used to measure primary spherical aberration (SA). The results suggest that spherical aberration of the growing lens becomes more negative before adulthood and less negative after around age 30. The data is consistent with results from in-vivo studies that suggest the lens spherical aberration becomes less negative in older lenses (>30 years).","PeriodicalId":204875,"journal":{"name":"Ophthalmic Technologies XXIX","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spherical aberration of the crystalline lens measured in-vitro using an LRT-OCT system (Conference Presentation)\",\"authors\":\"Siobhan Williams, M. Ruggeri, Bianca Maceo Heilman, Yu-Cherng Chang, Ashik Mohamed, G. Sravani, C. Rowaan, Alex Gonzalez, A. Ho, J. Parel, F. Manns\",\"doi\":\"10.1117/12.2508664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anatomical changes of the growing crystalline lens influence its refractive development, including power and spherical aberration. We have recently developed a new instrument that characterizes both the optical and biometric properties of the lens in-vitro by merging Ray-Tracing Aberrometry (RTA) with three-dimensional OCT imaging. In this abstract, we describe the application of the RTA to the measurement of lens spherical aberration.\\n\\nExperiments were performed on 54 isolated human lenses (age: 0.25 to 56 years). The system was programmed to sequentially deliver the probing beam through the lens using a raster scan pattern of 13 × 13 transversal positions spaced 0.5 mm apart. Exit rays were imaged after exiting the tissue chamber at 9 different axial positions (ΔZ = 0 mm to 8 mm) in 1 mm intervals. A total of 1,521 spot images were acquired per lens. All data was automatically analyzed using custom software we developed in MATLAB. Exit ray slopes over a 6 mm pupil were used to determine Zernike wavefront coefficients up to the sixth order. The 4th order Zernike coefficient Z[4,0] was used to measure primary spherical aberration (SA). The results suggest that spherical aberration of the growing lens becomes more negative before adulthood and less negative after around age 30. The data is consistent with results from in-vivo studies that suggest the lens spherical aberration becomes less negative in older lenses (>30 years).\",\"PeriodicalId\":204875,\"journal\":{\"name\":\"Ophthalmic Technologies XXIX\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ophthalmic Technologies XXIX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2508664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmic Technologies XXIX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2508664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

晶状体生长过程中的解剖变化影响其折射发展,包括功率和球差。我们最近开发了一种新的仪器,通过将射线追踪像差法(RTA)与三维OCT成像相结合,来表征晶状体的光学和生物特征。本文介绍了RTA在透镜球差测量中的应用。实验采用54例离体人体晶状体(年龄:0.25 ~ 56岁)进行。该系统被编程为使用13 × 13个间距为0.5 mm的横向位置的光栅扫描模式,顺序地将探测光束通过透镜。以1mm的间隔,在9个不同的轴向位置(ΔZ = 0 mm ~ 8 mm)离开组织腔后成像。每个镜头共获得1521张点图像。所有数据使用我们在MATLAB中开发的定制软件自动分析。出口射线斜度超过6毫米的瞳孔被用来确定泽尼克波前系数高达六阶。采用四阶泽尼克系数Z[4,0]测量初级球差(SA)。结果表明,生长晶状体的球差在成年前趋于负,而在30岁左右后趋于负。该数据与体内研究的结果一致,该结果表明,年龄较大(>30年)的晶状体球差变得不那么负。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spherical aberration of the crystalline lens measured in-vitro using an LRT-OCT system (Conference Presentation)
Anatomical changes of the growing crystalline lens influence its refractive development, including power and spherical aberration. We have recently developed a new instrument that characterizes both the optical and biometric properties of the lens in-vitro by merging Ray-Tracing Aberrometry (RTA) with three-dimensional OCT imaging. In this abstract, we describe the application of the RTA to the measurement of lens spherical aberration. Experiments were performed on 54 isolated human lenses (age: 0.25 to 56 years). The system was programmed to sequentially deliver the probing beam through the lens using a raster scan pattern of 13 × 13 transversal positions spaced 0.5 mm apart. Exit rays were imaged after exiting the tissue chamber at 9 different axial positions (ΔZ = 0 mm to 8 mm) in 1 mm intervals. A total of 1,521 spot images were acquired per lens. All data was automatically analyzed using custom software we developed in MATLAB. Exit ray slopes over a 6 mm pupil were used to determine Zernike wavefront coefficients up to the sixth order. The 4th order Zernike coefficient Z[4,0] was used to measure primary spherical aberration (SA). The results suggest that spherical aberration of the growing lens becomes more negative before adulthood and less negative after around age 30. The data is consistent with results from in-vivo studies that suggest the lens spherical aberration becomes less negative in older lenses (>30 years).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信