{"title":"电力用永磁故障限流器的设计与建模","authors":"F. Al-naemi, W. Issa, A. Ramadan, J. Hall","doi":"10.1109/UPEC.2018.8542056","DOIUrl":null,"url":null,"abstract":"As the electrical power grids are extending in capacity with connection of distributed generations, the fault current level is increasing and approaching the capacity limits of the circuit breakers. In this paper, a saturated inductor fault current limiter (FCL) based on permanent magnet biasing has been developed to overcome the inherent disadvantages associated with many previous technologies such as superconducting based techniques. A 3D Finite Element Modeling (FEM) is used to develop and validate the proposed design and compared it with air-cored inductor. A lab-scale prototype was built to verify the design. Furthermore, a scaled up model which could be introduced to 11 kV network is introduced and its electromagnetic performance is evaluated.","PeriodicalId":340842,"journal":{"name":"2018 53rd International Universities Power Engineering Conference (UPEC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Design and Modelling of Permanent Magnet Fault Current Limiter For Electrical Power Applications\",\"authors\":\"F. Al-naemi, W. Issa, A. Ramadan, J. Hall\",\"doi\":\"10.1109/UPEC.2018.8542056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the electrical power grids are extending in capacity with connection of distributed generations, the fault current level is increasing and approaching the capacity limits of the circuit breakers. In this paper, a saturated inductor fault current limiter (FCL) based on permanent magnet biasing has been developed to overcome the inherent disadvantages associated with many previous technologies such as superconducting based techniques. A 3D Finite Element Modeling (FEM) is used to develop and validate the proposed design and compared it with air-cored inductor. A lab-scale prototype was built to verify the design. Furthermore, a scaled up model which could be introduced to 11 kV network is introduced and its electromagnetic performance is evaluated.\",\"PeriodicalId\":340842,\"journal\":{\"name\":\"2018 53rd International Universities Power Engineering Conference (UPEC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 53rd International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC.2018.8542056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 53rd International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2018.8542056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Modelling of Permanent Magnet Fault Current Limiter For Electrical Power Applications
As the electrical power grids are extending in capacity with connection of distributed generations, the fault current level is increasing and approaching the capacity limits of the circuit breakers. In this paper, a saturated inductor fault current limiter (FCL) based on permanent magnet biasing has been developed to overcome the inherent disadvantages associated with many previous technologies such as superconducting based techniques. A 3D Finite Element Modeling (FEM) is used to develop and validate the proposed design and compared it with air-cored inductor. A lab-scale prototype was built to verify the design. Furthermore, a scaled up model which could be introduced to 11 kV network is introduced and its electromagnetic performance is evaluated.