{"title":"基于sram的fpga实现光子事件识别的自检神经系统","authors":"M. Alderighi, S. D'Angelo, G. Sechi, V. Piuri","doi":"10.1109/DFTVS.1999.802894","DOIUrl":null,"url":null,"abstract":"The paper presents and evaluates the design and the implementation of a self-checking neural system for photon event identification in intensified charge-coupled device detectors. The neural approach reveals more effective than classical algorithmic approaches thanks to its learning through example ability. Implementation is accomplished by SRAM-based FPGAs, which have generated increasing interest in the space community. The adoption of suitable on-line fault detection techniques is illustrated taking into account in a specific way SEU induced faults. The techniques are based on AN coding, particularly 3N coding, which constitutes a reasonable trade-off between circuit complexity and computational delay. Estimations of circuit area overhead and fault coverage are reported.","PeriodicalId":448322,"journal":{"name":"Proceedings 1999 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (EFT'99)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Implementing a self-checking neural system for photon event identification by SRAM-based FPGAs\",\"authors\":\"M. Alderighi, S. D'Angelo, G. Sechi, V. Piuri\",\"doi\":\"10.1109/DFTVS.1999.802894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents and evaluates the design and the implementation of a self-checking neural system for photon event identification in intensified charge-coupled device detectors. The neural approach reveals more effective than classical algorithmic approaches thanks to its learning through example ability. Implementation is accomplished by SRAM-based FPGAs, which have generated increasing interest in the space community. The adoption of suitable on-line fault detection techniques is illustrated taking into account in a specific way SEU induced faults. The techniques are based on AN coding, particularly 3N coding, which constitutes a reasonable trade-off between circuit complexity and computational delay. Estimations of circuit area overhead and fault coverage are reported.\",\"PeriodicalId\":448322,\"journal\":{\"name\":\"Proceedings 1999 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (EFT'99)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1999 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (EFT'99)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFTVS.1999.802894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1999 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (EFT'99)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFTVS.1999.802894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementing a self-checking neural system for photon event identification by SRAM-based FPGAs
The paper presents and evaluates the design and the implementation of a self-checking neural system for photon event identification in intensified charge-coupled device detectors. The neural approach reveals more effective than classical algorithmic approaches thanks to its learning through example ability. Implementation is accomplished by SRAM-based FPGAs, which have generated increasing interest in the space community. The adoption of suitable on-line fault detection techniques is illustrated taking into account in a specific way SEU induced faults. The techniques are based on AN coding, particularly 3N coding, which constitutes a reasonable trade-off between circuit complexity and computational delay. Estimations of circuit area overhead and fault coverage are reported.