抗破解密码库的安全性研究

M. Golla, Benedict Beuscher, Markus Dürmuth
{"title":"抗破解密码库的安全性研究","authors":"M. Golla, Benedict Beuscher, Markus Dürmuth","doi":"10.1145/2976749.2978416","DOIUrl":null,"url":null,"abstract":"Password vaults are used to store login credentials, usually encrypted by a master password, relieving the user from memorizing a large number of complex passwords. To manage accounts on multiple devices, vaults are often stored at an online service, which substantially increases the risk of leaking the (encrypted) vault. To protect the master password against guessing attacks, previous work has introduced cracking-resistant password vaults based on Honey Encryption. If decryption is attempted with a wrong master password, they output plausible-looking decoy vaults, thus seemingly disabling offline guessing attacks. In this work, we propose attacks against cracking-resistant password vaults that are able to distinguish between real and decoy vaults with high accuracy and thus circumvent the offered protection. These attacks are based on differences in the generated distribution of passwords, which are measured using Kullback-Leibler divergence. Our attack is able to rank the correct vault into the 1.3% most likely vaults (on median), compared to 37.8% of the best-reported attack in previous work. (Note that smaller ranks are better, and 50% is achievable by random guessing.) We demonstrate that this attack is, to a certain extent, a fundamental problem with all static Natural Language Encoders (NLE), where the distribution of decoy vaults is fixed. We propose the notion of adaptive NLEs and demonstrate that they substantially limit the effectiveness of such attacks. We give one example of an adaptive NLE based on Markov models and show that the attack is only able to rank the decoy vaults with a median rank of 35.1%.","PeriodicalId":432261,"journal":{"name":"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"On the Security of Cracking-Resistant Password Vaults\",\"authors\":\"M. Golla, Benedict Beuscher, Markus Dürmuth\",\"doi\":\"10.1145/2976749.2978416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Password vaults are used to store login credentials, usually encrypted by a master password, relieving the user from memorizing a large number of complex passwords. To manage accounts on multiple devices, vaults are often stored at an online service, which substantially increases the risk of leaking the (encrypted) vault. To protect the master password against guessing attacks, previous work has introduced cracking-resistant password vaults based on Honey Encryption. If decryption is attempted with a wrong master password, they output plausible-looking decoy vaults, thus seemingly disabling offline guessing attacks. In this work, we propose attacks against cracking-resistant password vaults that are able to distinguish between real and decoy vaults with high accuracy and thus circumvent the offered protection. These attacks are based on differences in the generated distribution of passwords, which are measured using Kullback-Leibler divergence. Our attack is able to rank the correct vault into the 1.3% most likely vaults (on median), compared to 37.8% of the best-reported attack in previous work. (Note that smaller ranks are better, and 50% is achievable by random guessing.) We demonstrate that this attack is, to a certain extent, a fundamental problem with all static Natural Language Encoders (NLE), where the distribution of decoy vaults is fixed. We propose the notion of adaptive NLEs and demonstrate that they substantially limit the effectiveness of such attacks. We give one example of an adaptive NLE based on Markov models and show that the attack is only able to rank the decoy vaults with a median rank of 35.1%.\",\"PeriodicalId\":432261,\"journal\":{\"name\":\"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2976749.2978416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2976749.2978416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

密码库用于存储登录凭据,通常由主密码加密,从而使用户不必记住大量复杂的密码。为了管理多个设备上的帐户,保险库通常存储在在线服务中,这大大增加了泄露(加密)保险库的风险。为了保护主密码免受猜测攻击,以前的工作已经引入了基于蜂蜜加密的抗破解密码库。如果试图使用错误的主密码进行解密,它们会输出看似可信的诱饵库,从而似乎可以阻止离线猜测攻击。在这项工作中,我们提出了针对抗破解密码库的攻击,这些攻击能够高精度地区分真实和诱饵库,从而规避所提供的保护。这些攻击基于密码生成分布的差异,使用Kullback-Leibler散度来衡量。我们的攻击能够将正确的vault排在1.3%最有可能的vault中(中位数),而在之前的工作中,最好的攻击报告中有37.8%。(注意,排名越小越好,50%可以通过随机猜测实现。)我们证明,在某种程度上,这种攻击是所有静态自然语言编码器(NLE)的一个基本问题,其中诱饵库的分布是固定的。我们提出了自适应NLEs的概念,并证明它们实质上限制了此类攻击的有效性。我们给出了一个基于马尔可夫模型的自适应NLE的例子,并表明攻击只能以35.1%的中位数排名对诱饵金库进行排名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Security of Cracking-Resistant Password Vaults
Password vaults are used to store login credentials, usually encrypted by a master password, relieving the user from memorizing a large number of complex passwords. To manage accounts on multiple devices, vaults are often stored at an online service, which substantially increases the risk of leaking the (encrypted) vault. To protect the master password against guessing attacks, previous work has introduced cracking-resistant password vaults based on Honey Encryption. If decryption is attempted with a wrong master password, they output plausible-looking decoy vaults, thus seemingly disabling offline guessing attacks. In this work, we propose attacks against cracking-resistant password vaults that are able to distinguish between real and decoy vaults with high accuracy and thus circumvent the offered protection. These attacks are based on differences in the generated distribution of passwords, which are measured using Kullback-Leibler divergence. Our attack is able to rank the correct vault into the 1.3% most likely vaults (on median), compared to 37.8% of the best-reported attack in previous work. (Note that smaller ranks are better, and 50% is achievable by random guessing.) We demonstrate that this attack is, to a certain extent, a fundamental problem with all static Natural Language Encoders (NLE), where the distribution of decoy vaults is fixed. We propose the notion of adaptive NLEs and demonstrate that they substantially limit the effectiveness of such attacks. We give one example of an adaptive NLE based on Markov models and show that the attack is only able to rank the decoy vaults with a median rank of 35.1%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信