Amélie Chevalier, C. Copot, D. Copot, C. Ionescu, R. Keyser
{"title":"低阻尼系统的分数阶反馈控制","authors":"Amélie Chevalier, C. Copot, D. Copot, C. Ionescu, R. Keyser","doi":"10.1109/AQTR.2014.6857909","DOIUrl":null,"url":null,"abstract":"This study presents the design of a fractional-order proportional-integral (FOPI) controller for a mass-spring-damper system which is poorly damped. A model based design technique is used to design a FOPI controller for this system. A good performance of the closed loop control of a high order oscillatory system, such as the mass-spring-damper system, is with traditional proportional-integral (PI) controllers difficult to achieve. Therefore, a comparison between a traditional PI controller and a FOPI controller is performed by simulation. The simulation results show that the FOPI controller outperforms the classical PI controller resulting in an increased damping of the oscillations while maintaining a reasonable control effort.","PeriodicalId":297141,"journal":{"name":"2014 IEEE International Conference on Automation, Quality and Testing, Robotics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Fractional-order feedback control of a poorly damped system\",\"authors\":\"Amélie Chevalier, C. Copot, D. Copot, C. Ionescu, R. Keyser\",\"doi\":\"10.1109/AQTR.2014.6857909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents the design of a fractional-order proportional-integral (FOPI) controller for a mass-spring-damper system which is poorly damped. A model based design technique is used to design a FOPI controller for this system. A good performance of the closed loop control of a high order oscillatory system, such as the mass-spring-damper system, is with traditional proportional-integral (PI) controllers difficult to achieve. Therefore, a comparison between a traditional PI controller and a FOPI controller is performed by simulation. The simulation results show that the FOPI controller outperforms the classical PI controller resulting in an increased damping of the oscillations while maintaining a reasonable control effort.\",\"PeriodicalId\":297141,\"journal\":{\"name\":\"2014 IEEE International Conference on Automation, Quality and Testing, Robotics\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Automation, Quality and Testing, Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AQTR.2014.6857909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Automation, Quality and Testing, Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AQTR.2014.6857909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fractional-order feedback control of a poorly damped system
This study presents the design of a fractional-order proportional-integral (FOPI) controller for a mass-spring-damper system which is poorly damped. A model based design technique is used to design a FOPI controller for this system. A good performance of the closed loop control of a high order oscillatory system, such as the mass-spring-damper system, is with traditional proportional-integral (PI) controllers difficult to achieve. Therefore, a comparison between a traditional PI controller and a FOPI controller is performed by simulation. The simulation results show that the FOPI controller outperforms the classical PI controller resulting in an increased damping of the oscillations while maintaining a reasonable control effort.