{"title":"风电变流器的半导体器件及其控制","authors":"Jiancheng Yang, Xinghua Fu, Shuanghong Xue","doi":"10.12720/SGCE.2.2.208-214","DOIUrl":null,"url":null,"abstract":"For large power wind turbines, large-signal disturbance in wind power converter require a sufficiently large stability region around the quiescent values. The nonlinear and uncertain variations in power converter lead the control difficulty. In this paper, we will discuss the control strategy and 3 hierarchies in Power Electronic Building Blocks (PEBBs) after analyzing non-linear and uncertain variation of power semiconductor devices. A potential function based Lyapunov function will be introduced.","PeriodicalId":247617,"journal":{"name":"International Journal of Smart Grid and Clean Energy","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Semiconductor Devices of Wind Power Converter and Its Control\",\"authors\":\"Jiancheng Yang, Xinghua Fu, Shuanghong Xue\",\"doi\":\"10.12720/SGCE.2.2.208-214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For large power wind turbines, large-signal disturbance in wind power converter require a sufficiently large stability region around the quiescent values. The nonlinear and uncertain variations in power converter lead the control difficulty. In this paper, we will discuss the control strategy and 3 hierarchies in Power Electronic Building Blocks (PEBBs) after analyzing non-linear and uncertain variation of power semiconductor devices. A potential function based Lyapunov function will be introduced.\",\"PeriodicalId\":247617,\"journal\":{\"name\":\"International Journal of Smart Grid and Clean Energy\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Smart Grid and Clean Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12720/SGCE.2.2.208-214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart Grid and Clean Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/SGCE.2.2.208-214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semiconductor Devices of Wind Power Converter and Its Control
For large power wind turbines, large-signal disturbance in wind power converter require a sufficiently large stability region around the quiescent values. The nonlinear and uncertain variations in power converter lead the control difficulty. In this paper, we will discuss the control strategy and 3 hierarchies in Power Electronic Building Blocks (PEBBs) after analyzing non-linear and uncertain variation of power semiconductor devices. A potential function based Lyapunov function will be introduced.