Juan Angoa Amador, Agustín Contreras Carreto, Jesús González Sandoval
{"title":"(E,M)−拓扑范畴中的诱导结构","authors":"Juan Angoa Amador, Agustín Contreras Carreto, Jesús González Sandoval","doi":"10.18273/revint.v39n2-2021006","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a convenient categorical structure with respect to a class of monomorphisms M and epimorphisms E for any topological category. We show in particular that the structure that we introduce here, which is induced by topological functors and their initial liftings, allows the study of some M−coreflective subcategories of a topological category. We pay special attention to projective structures.","PeriodicalId":402331,"journal":{"name":"Revista Integración","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(E,M)−estructuras inducidas en categorías topológicas\",\"authors\":\"Juan Angoa Amador, Agustín Contreras Carreto, Jesús González Sandoval\",\"doi\":\"10.18273/revint.v39n2-2021006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe a convenient categorical structure with respect to a class of monomorphisms M and epimorphisms E for any topological category. We show in particular that the structure that we introduce here, which is induced by topological functors and their initial liftings, allows the study of some M−coreflective subcategories of a topological category. We pay special attention to projective structures.\",\"PeriodicalId\":402331,\"journal\":{\"name\":\"Revista Integración\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Integración\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18273/revint.v39n2-2021006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Integración","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/revint.v39n2-2021006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
(E,M)−estructuras inducidas en categorías topológicas
In this paper, we describe a convenient categorical structure with respect to a class of monomorphisms M and epimorphisms E for any topological category. We show in particular that the structure that we introduce here, which is induced by topological functors and their initial liftings, allows the study of some M−coreflective subcategories of a topological category. We pay special attention to projective structures.