不相等错误保护使用BCM和MBCM与非常规分区

Huan-Bang Li, H. Wakana, M. Tanaka
{"title":"不相等错误保护使用BCM和MBCM与非常规分区","authors":"Huan-Bang Li, H. Wakana, M. Tanaka","doi":"10.1109/ICUPC.1998.733629","DOIUrl":null,"url":null,"abstract":"Block coded modulation (BCM) and multiple BCM (MBCM) combined with an unconventional signal partition are proposed to produce unequal error protection (UEP). The presented BCM and MBCM have the advantage of allowing Viterbi decoding. By increasing the minimum squared Euclidean distance (MSED) and reducing the nearest-neighbor signal sequences, the bit error rate (BER) for important bits is greatly reduced.","PeriodicalId":341069,"journal":{"name":"ICUPC '98. IEEE 1998 International Conference on Universal Personal Communications. Conference Proceedings (Cat. No.98TH8384)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unequal error protection using BCM and MBCM with an unconventional partition\",\"authors\":\"Huan-Bang Li, H. Wakana, M. Tanaka\",\"doi\":\"10.1109/ICUPC.1998.733629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Block coded modulation (BCM) and multiple BCM (MBCM) combined with an unconventional signal partition are proposed to produce unequal error protection (UEP). The presented BCM and MBCM have the advantage of allowing Viterbi decoding. By increasing the minimum squared Euclidean distance (MSED) and reducing the nearest-neighbor signal sequences, the bit error rate (BER) for important bits is greatly reduced.\",\"PeriodicalId\":341069,\"journal\":{\"name\":\"ICUPC '98. IEEE 1998 International Conference on Universal Personal Communications. Conference Proceedings (Cat. No.98TH8384)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICUPC '98. IEEE 1998 International Conference on Universal Personal Communications. Conference Proceedings (Cat. No.98TH8384)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUPC.1998.733629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICUPC '98. IEEE 1998 International Conference on Universal Personal Communications. Conference Proceedings (Cat. No.98TH8384)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUPC.1998.733629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了分组编码调制(BCM)和多块编码调制(MBCM)结合一种非常规的信号分割来实现不等错保护(UEP)。所提出的BCM和MBCM具有支持维特比解码的优点。通过增加最小平方欧氏距离(MSED)和减少最近邻信号序列,可以大大降低重要比特的误码率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unequal error protection using BCM and MBCM with an unconventional partition
Block coded modulation (BCM) and multiple BCM (MBCM) combined with an unconventional signal partition are proposed to produce unequal error protection (UEP). The presented BCM and MBCM have the advantage of allowing Viterbi decoding. By increasing the minimum squared Euclidean distance (MSED) and reducing the nearest-neighbor signal sequences, the bit error rate (BER) for important bits is greatly reduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信