主动风险预算:波动性不是标准差

M. Leblanc
{"title":"主动风险预算:波动性不是标准差","authors":"M. Leblanc","doi":"10.2139/ssrn.1407584","DOIUrl":null,"url":null,"abstract":"We try to show the danger of confusing the concept of volatility with that of the standard deviation of a probability distribution. We work in the theoretical Black-Scholes model to give an explicit relationship between the two measures. We apply and then illustrate this relationship, firstly in a classical value at risk approach, secondly in the determination of the risk contributions of a portfolio. We see profound differences that should not lead to the rapprochement of the volatility and the standard deviation","PeriodicalId":400873,"journal":{"name":"Microeconomics: Information","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Active Risk Budgeting: Volatility is Not Standard Deviation\",\"authors\":\"M. Leblanc\",\"doi\":\"10.2139/ssrn.1407584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We try to show the danger of confusing the concept of volatility with that of the standard deviation of a probability distribution. We work in the theoretical Black-Scholes model to give an explicit relationship between the two measures. We apply and then illustrate this relationship, firstly in a classical value at risk approach, secondly in the determination of the risk contributions of a portfolio. We see profound differences that should not lead to the rapprochement of the volatility and the standard deviation\",\"PeriodicalId\":400873,\"journal\":{\"name\":\"Microeconomics: Information\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microeconomics: Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1407584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microeconomics: Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1407584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们试图说明将波动率的概念与概率分布的标准偏差的概念混淆的危险。我们在理论的布莱克-斯科尔斯模型中给出了两个度量之间的明确关系。我们首先在经典的风险值方法中应用并说明了这种关系,其次在确定投资组合的风险贡献方面。我们看到了深刻的差异,这应该不会导致波动性和标准差的和解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active Risk Budgeting: Volatility is Not Standard Deviation
We try to show the danger of confusing the concept of volatility with that of the standard deviation of a probability distribution. We work in the theoretical Black-Scholes model to give an explicit relationship between the two measures. We apply and then illustrate this relationship, firstly in a classical value at risk approach, secondly in the determination of the risk contributions of a portfolio. We see profound differences that should not lead to the rapprochement of the volatility and the standard deviation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信