基于深度学习的自适应功率扩展的工作负载预测

Stephen J. Tarsa, Amit Kumar, H. T. Kung
{"title":"基于深度学习的自适应功率扩展的工作负载预测","authors":"Stephen J. Tarsa, Amit Kumar, H. T. Kung","doi":"10.1109/ICICDT.2014.6838580","DOIUrl":null,"url":null,"abstract":"We apply hierarchical sparse coding, a form of deep learning, to model user-driven workloads based on on-chip hardware performance counters. We then predict periods of low instruction throughput, during which frequency and voltage can be scaled to reclaim power. Using a multi-layer coding structure, our method progressively codes counter values in terms of a few prominent features learned from data, and passes them to a Support Vector Machine (SVM) classifier where they act as signatures for predicting future workload states. We show that prediction accuracy and look-ahead range improve significantly over linear regression modeling, giving more time to adjust power management settings. Our method relies on learning and feature extraction algorithms that can discover and exploit hidden statistical invariances specific to workloads. We argue that, in addition to achieving superior prediction performance, our method is fast enough for practical use. To our knowledge, we are the first to use deep learning at the instruction level for workload prediction and on-chip power adaptation.","PeriodicalId":325020,"journal":{"name":"2014 IEEE International Conference on IC Design & Technology","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Workload prediction for adaptive power scaling using deep learning\",\"authors\":\"Stephen J. Tarsa, Amit Kumar, H. T. Kung\",\"doi\":\"10.1109/ICICDT.2014.6838580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply hierarchical sparse coding, a form of deep learning, to model user-driven workloads based on on-chip hardware performance counters. We then predict periods of low instruction throughput, during which frequency and voltage can be scaled to reclaim power. Using a multi-layer coding structure, our method progressively codes counter values in terms of a few prominent features learned from data, and passes them to a Support Vector Machine (SVM) classifier where they act as signatures for predicting future workload states. We show that prediction accuracy and look-ahead range improve significantly over linear regression modeling, giving more time to adjust power management settings. Our method relies on learning and feature extraction algorithms that can discover and exploit hidden statistical invariances specific to workloads. We argue that, in addition to achieving superior prediction performance, our method is fast enough for practical use. To our knowledge, we are the first to use deep learning at the instruction level for workload prediction and on-chip power adaptation.\",\"PeriodicalId\":325020,\"journal\":{\"name\":\"2014 IEEE International Conference on IC Design & Technology\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on IC Design & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICDT.2014.6838580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on IC Design & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICDT.2014.6838580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们应用分层稀疏编码(一种深度学习形式)来模拟基于片上硬件性能计数器的用户驱动工作负载。然后,我们预测指令吞吐量较低的时期,在此期间可以缩放频率和电压以回收功率。使用多层编码结构,我们的方法根据从数据中学习到的一些突出特征逐步编码计数器值,并将它们传递给支持向量机(SVM)分类器,在那里它们作为预测未来工作负载状态的签名。我们表明,预测精度和前瞻性范围显著提高线性回归建模,有更多的时间来调整电源管理设置。我们的方法依赖于学习和特征提取算法,这些算法可以发现和利用特定于工作负载的隐藏统计不变性。我们认为,除了实现卓越的预测性能,我们的方法是足够快的实际使用。据我们所知,我们是第一个在指令级使用深度学习进行工作负载预测和片上功率适应的公司。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Workload prediction for adaptive power scaling using deep learning
We apply hierarchical sparse coding, a form of deep learning, to model user-driven workloads based on on-chip hardware performance counters. We then predict periods of low instruction throughput, during which frequency and voltage can be scaled to reclaim power. Using a multi-layer coding structure, our method progressively codes counter values in terms of a few prominent features learned from data, and passes them to a Support Vector Machine (SVM) classifier where they act as signatures for predicting future workload states. We show that prediction accuracy and look-ahead range improve significantly over linear regression modeling, giving more time to adjust power management settings. Our method relies on learning and feature extraction algorithms that can discover and exploit hidden statistical invariances specific to workloads. We argue that, in addition to achieving superior prediction performance, our method is fast enough for practical use. To our knowledge, we are the first to use deep learning at the instruction level for workload prediction and on-chip power adaptation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信