{"title":"基于深度学习的自适应功率扩展的工作负载预测","authors":"Stephen J. Tarsa, Amit Kumar, H. T. Kung","doi":"10.1109/ICICDT.2014.6838580","DOIUrl":null,"url":null,"abstract":"We apply hierarchical sparse coding, a form of deep learning, to model user-driven workloads based on on-chip hardware performance counters. We then predict periods of low instruction throughput, during which frequency and voltage can be scaled to reclaim power. Using a multi-layer coding structure, our method progressively codes counter values in terms of a few prominent features learned from data, and passes them to a Support Vector Machine (SVM) classifier where they act as signatures for predicting future workload states. We show that prediction accuracy and look-ahead range improve significantly over linear regression modeling, giving more time to adjust power management settings. Our method relies on learning and feature extraction algorithms that can discover and exploit hidden statistical invariances specific to workloads. We argue that, in addition to achieving superior prediction performance, our method is fast enough for practical use. To our knowledge, we are the first to use deep learning at the instruction level for workload prediction and on-chip power adaptation.","PeriodicalId":325020,"journal":{"name":"2014 IEEE International Conference on IC Design & Technology","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Workload prediction for adaptive power scaling using deep learning\",\"authors\":\"Stephen J. Tarsa, Amit Kumar, H. T. Kung\",\"doi\":\"10.1109/ICICDT.2014.6838580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply hierarchical sparse coding, a form of deep learning, to model user-driven workloads based on on-chip hardware performance counters. We then predict periods of low instruction throughput, during which frequency and voltage can be scaled to reclaim power. Using a multi-layer coding structure, our method progressively codes counter values in terms of a few prominent features learned from data, and passes them to a Support Vector Machine (SVM) classifier where they act as signatures for predicting future workload states. We show that prediction accuracy and look-ahead range improve significantly over linear regression modeling, giving more time to adjust power management settings. Our method relies on learning and feature extraction algorithms that can discover and exploit hidden statistical invariances specific to workloads. We argue that, in addition to achieving superior prediction performance, our method is fast enough for practical use. To our knowledge, we are the first to use deep learning at the instruction level for workload prediction and on-chip power adaptation.\",\"PeriodicalId\":325020,\"journal\":{\"name\":\"2014 IEEE International Conference on IC Design & Technology\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on IC Design & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICDT.2014.6838580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on IC Design & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICDT.2014.6838580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Workload prediction for adaptive power scaling using deep learning
We apply hierarchical sparse coding, a form of deep learning, to model user-driven workloads based on on-chip hardware performance counters. We then predict periods of low instruction throughput, during which frequency and voltage can be scaled to reclaim power. Using a multi-layer coding structure, our method progressively codes counter values in terms of a few prominent features learned from data, and passes them to a Support Vector Machine (SVM) classifier where they act as signatures for predicting future workload states. We show that prediction accuracy and look-ahead range improve significantly over linear regression modeling, giving more time to adjust power management settings. Our method relies on learning and feature extraction algorithms that can discover and exploit hidden statistical invariances specific to workloads. We argue that, in addition to achieving superior prediction performance, our method is fast enough for practical use. To our knowledge, we are the first to use deep learning at the instruction level for workload prediction and on-chip power adaptation.