{"title":"利用遥感数据监测针叶林(以图赫利扬斯克森林为例)","authors":"K. Burshtynska, Y. Dekaliuk","doi":"10.33841/1819-1339-2-42-99-108","DOIUrl":null,"url":null,"abstract":"The purpose of the work is to consider the state of coniferous forests of the Tukhlyanske forestry of the Precarpathian region. Changes in land cover, pollution of air, water and soil, and deterioration of their quality, loss of biological diversity occur for forest ecosystems at the regional and global levels. Climate change, rising temperatures and declining rainfall are provoking the development of pests that are most common in coniferous forests. Remote sensing technologies allow to create forest monitoring systems, including determination of plantation structure, detection of changes in forests due to fires, deforestation, environmental problems, in particular forest drying. The method of detecting changes in forests is based on the use of high-resolution space imagery and on the processing of images obtained from unmanned aerial vehicles to identify healthy, dried and partially damaged by drying conifers in test areas. The result of the study is an image obtained by the method of controlled classification. The accuracy of the classification depends on the choice of signatures, and for that the UAV images are used. Scientific novelty and practical significance. A method for the identification of different states of coniferous forests using the method of controlled classification by the algorithm of maximum probability is proposed. The choice of class signatures is fundamental to solving the problem. The technique can be applied in various structures of forestry","PeriodicalId":422474,"journal":{"name":"Modern achievements of geodesic science and industry","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring coniferous forests using remote sensing data (on the example of Tukhlyanske forestry)\",\"authors\":\"K. Burshtynska, Y. Dekaliuk\",\"doi\":\"10.33841/1819-1339-2-42-99-108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of the work is to consider the state of coniferous forests of the Tukhlyanske forestry of the Precarpathian region. Changes in land cover, pollution of air, water and soil, and deterioration of their quality, loss of biological diversity occur for forest ecosystems at the regional and global levels. Climate change, rising temperatures and declining rainfall are provoking the development of pests that are most common in coniferous forests. Remote sensing technologies allow to create forest monitoring systems, including determination of plantation structure, detection of changes in forests due to fires, deforestation, environmental problems, in particular forest drying. The method of detecting changes in forests is based on the use of high-resolution space imagery and on the processing of images obtained from unmanned aerial vehicles to identify healthy, dried and partially damaged by drying conifers in test areas. The result of the study is an image obtained by the method of controlled classification. The accuracy of the classification depends on the choice of signatures, and for that the UAV images are used. Scientific novelty and practical significance. A method for the identification of different states of coniferous forests using the method of controlled classification by the algorithm of maximum probability is proposed. The choice of class signatures is fundamental to solving the problem. The technique can be applied in various structures of forestry\",\"PeriodicalId\":422474,\"journal\":{\"name\":\"Modern achievements of geodesic science and industry\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern achievements of geodesic science and industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33841/1819-1339-2-42-99-108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern achievements of geodesic science and industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33841/1819-1339-2-42-99-108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monitoring coniferous forests using remote sensing data (on the example of Tukhlyanske forestry)
The purpose of the work is to consider the state of coniferous forests of the Tukhlyanske forestry of the Precarpathian region. Changes in land cover, pollution of air, water and soil, and deterioration of their quality, loss of biological diversity occur for forest ecosystems at the regional and global levels. Climate change, rising temperatures and declining rainfall are provoking the development of pests that are most common in coniferous forests. Remote sensing technologies allow to create forest monitoring systems, including determination of plantation structure, detection of changes in forests due to fires, deforestation, environmental problems, in particular forest drying. The method of detecting changes in forests is based on the use of high-resolution space imagery and on the processing of images obtained from unmanned aerial vehicles to identify healthy, dried and partially damaged by drying conifers in test areas. The result of the study is an image obtained by the method of controlled classification. The accuracy of the classification depends on the choice of signatures, and for that the UAV images are used. Scientific novelty and practical significance. A method for the identification of different states of coniferous forests using the method of controlled classification by the algorithm of maximum probability is proposed. The choice of class signatures is fundamental to solving the problem. The technique can be applied in various structures of forestry