I. Cerutti, N. Andriolli, P. Pintus, S. Faralli, F. Gambini, O. Liboiron-Ladouceur, P. Castoldi
{"title":"基于迭代并行波长匹配的多波长环形片上网络快速调度","authors":"I. Cerutti, N. Andriolli, P. Pintus, S. Faralli, F. Gambini, O. Liboiron-Ladouceur, P. Castoldi","doi":"10.1109/ONDM.2015.7127295","DOIUrl":null,"url":null,"abstract":"In synchronous networks-on-chip (NoC), scheduling of packet transmission is required for achieving high throughput, low latency and good fairness, while avoiding packet collisions. Efficient algorithms exist for rearrangeably non-blocking NoC. However, when realized with integrated optical devices, NoC are typically arranged in topologies that are blocking if a single wavelength is used. Mitigation of the blocking behavior is then achieved by exploiting the wavelength domain, which requires however a novel scheduling paradigm. This paper presents an integrated optical NoC based on a ring topology and realized with multiple resonating microrings (MMR). Scheduling in MMR architecture comprises the conventional matching sub-problem along with wavelength assignment sub-problem, which accounts for the additional constraints due to the wavelength domain. A novel scheduling algorithm based on iSLIP algorithm is proposed for jointly addressing both sub-problems. The iterative Parallel Wavelength Matching (iPWM) algorithm achieves performance similar to a two-step scheduler based on sequential iSLIP and first-fit wavelength assignment, but with a computational complexity lower and independent of the number of wavelengths.","PeriodicalId":282743,"journal":{"name":"2015 International Conference on Optical Network Design and Modeling (ONDM)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fast scheduling based on iterative parallel wavelength matching for a multi-wavelength ring network-on-chip\",\"authors\":\"I. Cerutti, N. Andriolli, P. Pintus, S. Faralli, F. Gambini, O. Liboiron-Ladouceur, P. Castoldi\",\"doi\":\"10.1109/ONDM.2015.7127295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In synchronous networks-on-chip (NoC), scheduling of packet transmission is required for achieving high throughput, low latency and good fairness, while avoiding packet collisions. Efficient algorithms exist for rearrangeably non-blocking NoC. However, when realized with integrated optical devices, NoC are typically arranged in topologies that are blocking if a single wavelength is used. Mitigation of the blocking behavior is then achieved by exploiting the wavelength domain, which requires however a novel scheduling paradigm. This paper presents an integrated optical NoC based on a ring topology and realized with multiple resonating microrings (MMR). Scheduling in MMR architecture comprises the conventional matching sub-problem along with wavelength assignment sub-problem, which accounts for the additional constraints due to the wavelength domain. A novel scheduling algorithm based on iSLIP algorithm is proposed for jointly addressing both sub-problems. The iterative Parallel Wavelength Matching (iPWM) algorithm achieves performance similar to a two-step scheduler based on sequential iSLIP and first-fit wavelength assignment, but with a computational complexity lower and independent of the number of wavelengths.\",\"PeriodicalId\":282743,\"journal\":{\"name\":\"2015 International Conference on Optical Network Design and Modeling (ONDM)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Optical Network Design and Modeling (ONDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ONDM.2015.7127295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Optical Network Design and Modeling (ONDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ONDM.2015.7127295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast scheduling based on iterative parallel wavelength matching for a multi-wavelength ring network-on-chip
In synchronous networks-on-chip (NoC), scheduling of packet transmission is required for achieving high throughput, low latency and good fairness, while avoiding packet collisions. Efficient algorithms exist for rearrangeably non-blocking NoC. However, when realized with integrated optical devices, NoC are typically arranged in topologies that are blocking if a single wavelength is used. Mitigation of the blocking behavior is then achieved by exploiting the wavelength domain, which requires however a novel scheduling paradigm. This paper presents an integrated optical NoC based on a ring topology and realized with multiple resonating microrings (MMR). Scheduling in MMR architecture comprises the conventional matching sub-problem along with wavelength assignment sub-problem, which accounts for the additional constraints due to the wavelength domain. A novel scheduling algorithm based on iSLIP algorithm is proposed for jointly addressing both sub-problems. The iterative Parallel Wavelength Matching (iPWM) algorithm achieves performance similar to a two-step scheduler based on sequential iSLIP and first-fit wavelength assignment, but with a computational complexity lower and independent of the number of wavelengths.