Vibin Shalom Simon, Lochan Sai Reddy, Pardeep Shahi, Amrutha Valli, S. Saini, Himanshu Modi, Pratik V. Bansode, D. Agonafer
{"title":"混合冷却服务器热捕获率的CFD分析","authors":"Vibin Shalom Simon, Lochan Sai Reddy, Pardeep Shahi, Amrutha Valli, S. Saini, Himanshu Modi, Pratik V. Bansode, D. Agonafer","doi":"10.1115/ipack2022-97445","DOIUrl":null,"url":null,"abstract":"\n Rising power densities at the server level due to increasing performance demands are being met by using efficient thermal management methods such as direct-to-chip liquid cooling. The use of cold plates that are directly installed yields a lower thermal resistance path from the chip to the ambient. In a hybrid-cooled server arrangement, high-heat-generating components are cooled with water or a water-based fluid, while the rest of the components are cooled with air using server-level fans. It is imperative to characterize the heat capture ratio for various server boundary conditions to ascertain the best possible liquid and airflow rates and temperatures. These parameters serve as inputs in defining the Total Cost of Ownership (TCO). The present investigation numerically evaluates the heat capture ratio in a hybrid cooled server for peak server load and varying inlet temperature for air and liquid. The CFD model of a Cisco Series C220 server with direct-to-chip liquid-cooled CPUs was developed. The cold plate for the CPU was experimentally characterized for pressure drop and thermal resistance characteristics and a black-box model was used for CFD simulations using 25% propylene glycol as the coolant. The heat capture ratio value was obtained under the varied temperature and flow rate boundary conditions of air and liquid. Based on the heat capture ratio values obtained, optimum values of inlet temperatures and flow rates are recommended for air and liquid for the server being investigated.","PeriodicalId":117260,"journal":{"name":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CFD Analysis of Heat Capture Ratio in a Hybrid Cooled Server\",\"authors\":\"Vibin Shalom Simon, Lochan Sai Reddy, Pardeep Shahi, Amrutha Valli, S. Saini, Himanshu Modi, Pratik V. Bansode, D. Agonafer\",\"doi\":\"10.1115/ipack2022-97445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Rising power densities at the server level due to increasing performance demands are being met by using efficient thermal management methods such as direct-to-chip liquid cooling. The use of cold plates that are directly installed yields a lower thermal resistance path from the chip to the ambient. In a hybrid-cooled server arrangement, high-heat-generating components are cooled with water or a water-based fluid, while the rest of the components are cooled with air using server-level fans. It is imperative to characterize the heat capture ratio for various server boundary conditions to ascertain the best possible liquid and airflow rates and temperatures. These parameters serve as inputs in defining the Total Cost of Ownership (TCO). The present investigation numerically evaluates the heat capture ratio in a hybrid cooled server for peak server load and varying inlet temperature for air and liquid. The CFD model of a Cisco Series C220 server with direct-to-chip liquid-cooled CPUs was developed. The cold plate for the CPU was experimentally characterized for pressure drop and thermal resistance characteristics and a black-box model was used for CFD simulations using 25% propylene glycol as the coolant. The heat capture ratio value was obtained under the varied temperature and flow rate boundary conditions of air and liquid. Based on the heat capture ratio values obtained, optimum values of inlet temperatures and flow rates are recommended for air and liquid for the server being investigated.\",\"PeriodicalId\":117260,\"journal\":{\"name\":\"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ipack2022-97445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ipack2022-97445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CFD Analysis of Heat Capture Ratio in a Hybrid Cooled Server
Rising power densities at the server level due to increasing performance demands are being met by using efficient thermal management methods such as direct-to-chip liquid cooling. The use of cold plates that are directly installed yields a lower thermal resistance path from the chip to the ambient. In a hybrid-cooled server arrangement, high-heat-generating components are cooled with water or a water-based fluid, while the rest of the components are cooled with air using server-level fans. It is imperative to characterize the heat capture ratio for various server boundary conditions to ascertain the best possible liquid and airflow rates and temperatures. These parameters serve as inputs in defining the Total Cost of Ownership (TCO). The present investigation numerically evaluates the heat capture ratio in a hybrid cooled server for peak server load and varying inlet temperature for air and liquid. The CFD model of a Cisco Series C220 server with direct-to-chip liquid-cooled CPUs was developed. The cold plate for the CPU was experimentally characterized for pressure drop and thermal resistance characteristics and a black-box model was used for CFD simulations using 25% propylene glycol as the coolant. The heat capture ratio value was obtained under the varied temperature and flow rate boundary conditions of air and liquid. Based on the heat capture ratio values obtained, optimum values of inlet temperatures and flow rates are recommended for air and liquid for the server being investigated.