L. Guang, E. Nigussie, J. Plosila, J. Isoaho, H. Tenhunen
{"title":"HLS-DoNoC:用于动态组织noc的高级模拟器","authors":"L. Guang, E. Nigussie, J. Plosila, J. Isoaho, H. Tenhunen","doi":"10.1109/DDECS.2012.6219031","DOIUrl":null,"url":null,"abstract":"A high-level simulator is presented for the design and analysis of dynamically organizational Networks-on-Chip (DoNoCs). The DoNoC is able to organize statically or dynamically different network nodes for run-time coarse and fine grained reconfiguration, in particular power management. As an important step in the design flow, a simulator for early-stage design exploration is the focus of the paper. Built upon classic wormhole-based NoC architecture, the simulator is capable of experimenting diverse run-time monitoring and reconfiguration methods. In particular, dynamic clusterization can be performed with inter-cluster interfaces properly configured at the run-time. The simulator is flit-level accurate, trace-driven, and easy-to-reconfigure. It supports both synchronous and ratiochronous timing, and can provide the communication performance and power/energy consumption. The paper demonstrates the usage of the simulator in the design of various cluster-based power management schemes.","PeriodicalId":131623,"journal":{"name":"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"HLS-DoNoC: High-level simulator for dynamically organizational NoCs\",\"authors\":\"L. Guang, E. Nigussie, J. Plosila, J. Isoaho, H. Tenhunen\",\"doi\":\"10.1109/DDECS.2012.6219031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A high-level simulator is presented for the design and analysis of dynamically organizational Networks-on-Chip (DoNoCs). The DoNoC is able to organize statically or dynamically different network nodes for run-time coarse and fine grained reconfiguration, in particular power management. As an important step in the design flow, a simulator for early-stage design exploration is the focus of the paper. Built upon classic wormhole-based NoC architecture, the simulator is capable of experimenting diverse run-time monitoring and reconfiguration methods. In particular, dynamic clusterization can be performed with inter-cluster interfaces properly configured at the run-time. The simulator is flit-level accurate, trace-driven, and easy-to-reconfigure. It supports both synchronous and ratiochronous timing, and can provide the communication performance and power/energy consumption. The paper demonstrates the usage of the simulator in the design of various cluster-based power management schemes.\",\"PeriodicalId\":131623,\"journal\":{\"name\":\"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDECS.2012.6219031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS.2012.6219031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HLS-DoNoC: High-level simulator for dynamically organizational NoCs
A high-level simulator is presented for the design and analysis of dynamically organizational Networks-on-Chip (DoNoCs). The DoNoC is able to organize statically or dynamically different network nodes for run-time coarse and fine grained reconfiguration, in particular power management. As an important step in the design flow, a simulator for early-stage design exploration is the focus of the paper. Built upon classic wormhole-based NoC architecture, the simulator is capable of experimenting diverse run-time monitoring and reconfiguration methods. In particular, dynamic clusterization can be performed with inter-cluster interfaces properly configured at the run-time. The simulator is flit-level accurate, trace-driven, and easy-to-reconfigure. It supports both synchronous and ratiochronous timing, and can provide the communication performance and power/energy consumption. The paper demonstrates the usage of the simulator in the design of various cluster-based power management schemes.