线性压缩网络

Naveen Goela, M. Gastpar
{"title":"线性压缩网络","authors":"Naveen Goela, M. Gastpar","doi":"10.1109/ISIT.2009.5205812","DOIUrl":null,"url":null,"abstract":"A linear compressive network (LCN) is defined as a graph of sensors in which each encoding sensor compresses incoming jointly Gaussian random signals and transmits (potentially) low-dimensional linear projections to neighbors over a noisy uncoded channel. Each sensor has a maximum power to allocate over signal subspaces. The networks of focus are acyclic, directed graphs with multiple sources and multiple destinations. LCN pathways lead to decoding leaf nodes that estimate linear functions of the original high dimensional sources by minimizing a mean squared error (MSE) distortion cost function. An iterative optimization of local compressive matrices for all graph nodes is developed using an optimal quadratically constrained quadratic program (QCQP) step. The performance of the optimization is marked by power-compression-distortion spectra, with converse bounds based on cut-set arguments. Examples include single layer and multi-layer (e.g. p-layer tree cascades, butterfly) networks. The LCN is a generalization of the Karhunen-Loève Transform to noisy multi-layer networks, and extends previous approaches for point-to-point and distributed compression-estimation of Gaussian signals. The framework relates to network coding in the noiseless case, and uncoded transmission in the noisy case.","PeriodicalId":412925,"journal":{"name":"2009 IEEE International Symposium on Information Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Linear compressive networks\",\"authors\":\"Naveen Goela, M. Gastpar\",\"doi\":\"10.1109/ISIT.2009.5205812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A linear compressive network (LCN) is defined as a graph of sensors in which each encoding sensor compresses incoming jointly Gaussian random signals and transmits (potentially) low-dimensional linear projections to neighbors over a noisy uncoded channel. Each sensor has a maximum power to allocate over signal subspaces. The networks of focus are acyclic, directed graphs with multiple sources and multiple destinations. LCN pathways lead to decoding leaf nodes that estimate linear functions of the original high dimensional sources by minimizing a mean squared error (MSE) distortion cost function. An iterative optimization of local compressive matrices for all graph nodes is developed using an optimal quadratically constrained quadratic program (QCQP) step. The performance of the optimization is marked by power-compression-distortion spectra, with converse bounds based on cut-set arguments. Examples include single layer and multi-layer (e.g. p-layer tree cascades, butterfly) networks. The LCN is a generalization of the Karhunen-Loève Transform to noisy multi-layer networks, and extends previous approaches for point-to-point and distributed compression-estimation of Gaussian signals. The framework relates to network coding in the noiseless case, and uncoded transmission in the noisy case.\",\"PeriodicalId\":412925,\"journal\":{\"name\":\"2009 IEEE International Symposium on Information Theory\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2009.5205812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2009.5205812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

线性压缩网络(LCN)被定义为一个传感器图,其中每个编码传感器共同压缩传入的高斯随机信号,并通过有噪声的无编码信道将(潜在的)低维线性投影传输给相邻传感器。每个传感器都有一个最大功率来分配信号子空间。焦点网络是具有多个源和多个目的地的无环有向图。LCN路径导致解码叶节点,通过最小化均方误差(MSE)失真代价函数来估计原始高维源的线性函数。利用最优二次约束规划(QCQP)步骤,对所有图节点的局部压缩矩阵进行迭代优化。优化的性能用功率-压缩-失真谱来表示,该谱具有基于切集参数的逆界。例子包括单层和多层(如p层树级联,蝴蝶)网络。LCN是karhunen - lo变换到有噪声多层网络的推广,并扩展了高斯信号点对点和分布式压缩估计的先前方法。该框架涉及无噪声情况下的网络编码和有噪声情况下的无编码传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear compressive networks
A linear compressive network (LCN) is defined as a graph of sensors in which each encoding sensor compresses incoming jointly Gaussian random signals and transmits (potentially) low-dimensional linear projections to neighbors over a noisy uncoded channel. Each sensor has a maximum power to allocate over signal subspaces. The networks of focus are acyclic, directed graphs with multiple sources and multiple destinations. LCN pathways lead to decoding leaf nodes that estimate linear functions of the original high dimensional sources by minimizing a mean squared error (MSE) distortion cost function. An iterative optimization of local compressive matrices for all graph nodes is developed using an optimal quadratically constrained quadratic program (QCQP) step. The performance of the optimization is marked by power-compression-distortion spectra, with converse bounds based on cut-set arguments. Examples include single layer and multi-layer (e.g. p-layer tree cascades, butterfly) networks. The LCN is a generalization of the Karhunen-Loève Transform to noisy multi-layer networks, and extends previous approaches for point-to-point and distributed compression-estimation of Gaussian signals. The framework relates to network coding in the noiseless case, and uncoded transmission in the noisy case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信