无线传感器网络中时空相关与压缩感知相结合的数据聚合技术

Ning Sun, Qiusheng Lian
{"title":"无线传感器网络中时空相关与压缩感知相结合的数据聚合技术","authors":"Ning Sun, Qiusheng Lian","doi":"10.1109/ANTHOLOGY.2013.6784771","DOIUrl":null,"url":null,"abstract":"In wireless sensor networks (WSNs), energy-efficient data gathering and low-cost data transmission is very important for application, due to significant power constraints on the sensors. Our goal is to exploit temporal-spatial correlation and minimize the number of the required samples, reducing the cost of energy. We propose a data aggregation technique combined temporal-spatial correlation with compressed sensing (CS), where routing is used in conjunction with CS. In particular, we present an Iterative Hard Thresholding (IHT) algorithm based on temporal-spatial correlation. We then evaluate the performance of our proposed algorithm using synthetic signal. The results show that we can achieve significant savings in the total number of the required samples compared to the traditional CS schemes.","PeriodicalId":203169,"journal":{"name":"IEEE Conference Anthology","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data aggregation technique combined temporal-spatial correlation with compressed sensing in wireless sensor networks\",\"authors\":\"Ning Sun, Qiusheng Lian\",\"doi\":\"10.1109/ANTHOLOGY.2013.6784771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In wireless sensor networks (WSNs), energy-efficient data gathering and low-cost data transmission is very important for application, due to significant power constraints on the sensors. Our goal is to exploit temporal-spatial correlation and minimize the number of the required samples, reducing the cost of energy. We propose a data aggregation technique combined temporal-spatial correlation with compressed sensing (CS), where routing is used in conjunction with CS. In particular, we present an Iterative Hard Thresholding (IHT) algorithm based on temporal-spatial correlation. We then evaluate the performance of our proposed algorithm using synthetic signal. The results show that we can achieve significant savings in the total number of the required samples compared to the traditional CS schemes.\",\"PeriodicalId\":203169,\"journal\":{\"name\":\"IEEE Conference Anthology\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference Anthology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANTHOLOGY.2013.6784771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference Anthology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTHOLOGY.2013.6784771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在无线传感器网络(WSNs)中,由于传感器的功率限制,高效节能的数据采集和低成本的数据传输对其应用至关重要。我们的目标是利用时空相关性并最小化所需样本的数量,从而降低能量成本。我们提出了一种将时空相关与压缩感知(CS)相结合的数据聚合技术,其中路由与CS结合使用。特别地,我们提出了一种基于时空相关性的迭代硬阈值算法。然后,我们使用合成信号评估我们提出的算法的性能。结果表明,与传统的CS方案相比,我们可以显著节省所需样本的总数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data aggregation technique combined temporal-spatial correlation with compressed sensing in wireless sensor networks
In wireless sensor networks (WSNs), energy-efficient data gathering and low-cost data transmission is very important for application, due to significant power constraints on the sensors. Our goal is to exploit temporal-spatial correlation and minimize the number of the required samples, reducing the cost of energy. We propose a data aggregation technique combined temporal-spatial correlation with compressed sensing (CS), where routing is used in conjunction with CS. In particular, we present an Iterative Hard Thresholding (IHT) algorithm based on temporal-spatial correlation. We then evaluate the performance of our proposed algorithm using synthetic signal. The results show that we can achieve significant savings in the total number of the required samples compared to the traditional CS schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信