机器学习在分布式发电优化布局中的应用

Shah Mohazzem Hossain, Md. Saif Hassan Onim, S. Biswas, A. Chowdhury
{"title":"机器学习在分布式发电优化布局中的应用","authors":"Shah Mohazzem Hossain, Md. Saif Hassan Onim, S. Biswas, A. Chowdhury","doi":"10.1109/ICICT4SD50815.2021.9396945","DOIUrl":null,"url":null,"abstract":"Inappropriate placement of distributed generation (DG) can cause bus voltage profile deterioration and augmentation of active power loss due to high R/X ratio of the distribution lines. In this paper, a machine learning-based scheme is proposed for optimal positioning of DG units in the bus of a distribution network to lessen the active power losses and enhance the bus voltage profile in a noteworthy manner. Dynamic load condition of the network is prognosticated from a few foregoing years load characteristics using k- Nearest Neighbours (KNN) regression model of machine learning approach. The IEEE-14 test bus system is used to train with forecasted dynamic loads to recognize the consequent changes in bus voltage profile and line losses, from which optimal bus location of inserted DG is determined.","PeriodicalId":239251,"journal":{"name":"2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of Machine Learning for Optimal Placement of Distributed Generation\",\"authors\":\"Shah Mohazzem Hossain, Md. Saif Hassan Onim, S. Biswas, A. Chowdhury\",\"doi\":\"10.1109/ICICT4SD50815.2021.9396945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inappropriate placement of distributed generation (DG) can cause bus voltage profile deterioration and augmentation of active power loss due to high R/X ratio of the distribution lines. In this paper, a machine learning-based scheme is proposed for optimal positioning of DG units in the bus of a distribution network to lessen the active power losses and enhance the bus voltage profile in a noteworthy manner. Dynamic load condition of the network is prognosticated from a few foregoing years load characteristics using k- Nearest Neighbours (KNN) regression model of machine learning approach. The IEEE-14 test bus system is used to train with forecasted dynamic loads to recognize the consequent changes in bus voltage profile and line losses, from which optimal bus location of inserted DG is determined.\",\"PeriodicalId\":239251,\"journal\":{\"name\":\"2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT4SD50815.2021.9396945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT4SD50815.2021.9396945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于配电线路的高R/X比,分布式发电(DG)放置不当会导致母线电压分布恶化和有功功率损耗增大。本文提出了一种基于机器学习的配电网母线DG机组优化定位方案,以减少有功功率损耗并显著提高母线电压分布。利用机器学习方法中的k-最近邻(KNN)回归模型,从前几年的负荷特征对网络的动态负荷状态进行预测。使用IEEE-14测试母线系统对预测的动态负载进行训练,以识别母线电压分布和线路损耗的变化,从而确定插入DG的最佳母线位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Machine Learning for Optimal Placement of Distributed Generation
Inappropriate placement of distributed generation (DG) can cause bus voltage profile deterioration and augmentation of active power loss due to high R/X ratio of the distribution lines. In this paper, a machine learning-based scheme is proposed for optimal positioning of DG units in the bus of a distribution network to lessen the active power losses and enhance the bus voltage profile in a noteworthy manner. Dynamic load condition of the network is prognosticated from a few foregoing years load characteristics using k- Nearest Neighbours (KNN) regression model of machine learning approach. The IEEE-14 test bus system is used to train with forecasted dynamic loads to recognize the consequent changes in bus voltage profile and line losses, from which optimal bus location of inserted DG is determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信