利用稀疏性的鲁棒非负最小二乘

Filip Elvander, Stefan Ingi Adalbjornsson, A. Jakobsson
{"title":"利用稀疏性的鲁棒非负最小二乘","authors":"Filip Elvander, Stefan Ingi Adalbjornsson, A. Jakobsson","doi":"10.1109/EUSIPCO.2016.7760210","DOIUrl":null,"url":null,"abstract":"Sparse, non-negative signals occur in many applications. To recover such signals, estimation posed as non-negative least squares problems have proven to be fruitful. Efficient algorithms with high accuracy have been proposed, but many of them assume either perfect knowledge of the dictionary generating the signal, or attempts to explain deviations from this dictionary by attributing them to components that for some reason is missing from the dictionary. In this work, we propose a robust non-negative least squares algorithm that allows the generating dictionary to differ from the assumed dictionary, introducing uncertainty in the setup. The proposed algorithm enables an improved modeling of the measurements, and may be efficiently implemented using a proposed ADMM implementation. Numerical examples illustrate the improved performance as compared to the standard non-negative LASSO estimator.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust non-negative least squares using sparsity\",\"authors\":\"Filip Elvander, Stefan Ingi Adalbjornsson, A. Jakobsson\",\"doi\":\"10.1109/EUSIPCO.2016.7760210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse, non-negative signals occur in many applications. To recover such signals, estimation posed as non-negative least squares problems have proven to be fruitful. Efficient algorithms with high accuracy have been proposed, but many of them assume either perfect knowledge of the dictionary generating the signal, or attempts to explain deviations from this dictionary by attributing them to components that for some reason is missing from the dictionary. In this work, we propose a robust non-negative least squares algorithm that allows the generating dictionary to differ from the assumed dictionary, introducing uncertainty in the setup. The proposed algorithm enables an improved modeling of the measurements, and may be efficiently implemented using a proposed ADMM implementation. Numerical examples illustrate the improved performance as compared to the standard non-negative LASSO estimator.\",\"PeriodicalId\":127068,\"journal\":{\"name\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2016.7760210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

稀疏的非负信号出现在许多应用中。为了恢复这类信号,用非负最小二乘问题进行估计已被证明是有效的。已经提出了具有高精度的高效算法,但其中许多算法要么假设对生成信号的字典有完美的了解,要么试图通过将其归因于字典中由于某种原因缺失的组件来解释与该字典的偏差。在这项工作中,我们提出了一种鲁棒的非负最小二乘算法,该算法允许生成字典与假设字典不同,从而在设置中引入不确定性。所提出的算法能够改进测量的建模,并且可以使用所提出的ADMM实现有效地实现。数值算例表明,与标准非负LASSO估计器相比,该方法的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust non-negative least squares using sparsity
Sparse, non-negative signals occur in many applications. To recover such signals, estimation posed as non-negative least squares problems have proven to be fruitful. Efficient algorithms with high accuracy have been proposed, but many of them assume either perfect knowledge of the dictionary generating the signal, or attempts to explain deviations from this dictionary by attributing them to components that for some reason is missing from the dictionary. In this work, we propose a robust non-negative least squares algorithm that allows the generating dictionary to differ from the assumed dictionary, introducing uncertainty in the setup. The proposed algorithm enables an improved modeling of the measurements, and may be efficiently implemented using a proposed ADMM implementation. Numerical examples illustrate the improved performance as compared to the standard non-negative LASSO estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信